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Abstract: Data Assimilation (DA) is an uncertainty quantification technique used to
incorporate observed data into a prediction model in order to improve numerical forecasted
results. As a crucial point into DA models is the ill conditioning of the covariance matrices
involved, it is mandatory to introduce, in a DA software, preconditioning methods. Here
we present first results obtained introducing two different preconditioning methods in
a DA software we are developing (we named S3DVAR) which implements a Scalable
Three Dimensional Variational Data Assimilation model for assimilating sea surface
temperature (SST) values collected into the Caspian Sea by using the Regional Ocean
Modeling System (ROMS) with observations provided by the Group of High resolution
sea surface temperature (GHRSST). We present the algorithmic strategies we employ
and the numerical issues on data collected in two of the months which present the most
significant variability in water temperature: August and March.
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1 Introduction and Motivation

The Caspian Sea has an elongated geometry (1000 km in length and 200−300 km in width), where
the Northern, Middle and Southern Caspian Basins constitute the main geographic divisions [10].
The Sea Surface Temperature (SST) variabilities in the Caspian Sea have different characteristics
in the different regions. In the Southern Caspian, the SST reaches a high of 25 − 29◦C in the
summer months and has a low of 7 − 10◦C in the winter. The Northern Caspian experiences a
more drastic change in SST throughout the year, with a high of 25 − 26◦C in the summer and a
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10 R. Arcucci

below freezing point in the winter [30].

Improvement in Caspian sea temperatures prediction is a crucial point for different climate phe-
nomena simulation. An example is the study on the sea-ice coverage [48] or the prediction of the
cyclonicity in winter and anticyclonicity in spring and summer as the water temperature influences
the closed atmosphere [43]. This variability may be of interest in the long-term as it may act as
an early indicator of large-scale climate change, as well as being an area of interest to industries
and vulnerable species.

The current approach in ocean modelling (which includes sea temperature predictions) consists in
simulating explicitly only the largest-scale phenomena, while taking into account the smaller-scale
ones by means of “physical parametrisations”. Due to the inability to resolve the full spectrum
of physical mechanisms involved as well as the fundamentally stochastic nature of the turbulent
processes in the ocean, all ocean models introduce uncertainty through the selection of scales and
parameters that are somewhat inaccurate. Additionally, any computational methodology con-
tributes to uncertainty due to discretization, finite precision and the consequent accumulation and
amplification of round-off errors. Taking into account these uncertainties is essential for the accep-
tance of any numerical simulation.

The Data Assimilation (DA) is an uncertainty quantification technique used to incorporate ob-
served data into a prediction model in order to improve numerical forecasted results [33]. There
are many DA methods which are been mostly custom-developed on the ocean model with which
they are combined and, today, there are a lot of DA algorithms. Two main methods gained accep-
tance as powerful methods for data assimilation in the last decennium: the variational approach
and the Kalman Filter. The variational approach [1, 6, 39] is based on the minimization of a func-
tional which estimate the discrepancy between numerical results and measures. The Kalman Filter
[32] is a recursive filtering instead. Both methods assume that the two sources of information, fore-
cast and observations, have errors that are adequately described by error covariance matrices. The
computational kernel of the Kaman Filter is the solution of normal equations. For the variational
approach instead, it is the solution of a linear system [44, 33]. Caused by the background error
covariance matrices this system is strongly ill conditioned [25, 44].

Due to the scale of the forecasting area used to describe oceans and seas, DA is a “large size
problem” which mandates the development of DA software in a High Performance Computing
(HPC) environment. HPC gives the opportunity to take full advantage of emerging architectures
that can improve performances through the design and implementation of innovative approaches
(i.e., [9, 38, 37, 12, 36, 42]) for accessing the computational power that can be used to tackle
explicitly the growing complexity of the ocean circulation model [16, 17]. A simulation that yields
high-fidelity results is of little use if it is too expensive to run or if it cannot be scaled up to the
resolutions required to describe the real-world phenomena of interest. Scalability is mandatory to
reduce computational cost as well. Some studies about the minimisation of the total cost by the
owners of large scale computing systems, without affecting negatively the quality of service for the
users, are been provided in [7].

A suitable DA model must be identified which takes into account both the users/applications
requirements and all the mathematical, numerical and algorithmical related issues. Following a
problem-to-solve approach, we face the following issues about the

1. physical and mathematical assumptions concerning the definition/localization of both fore-
casting and observed data;
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2. algorithmic strategies concerning the definition of the covariance matrices as well as their
preconditioning;

3. scalability expectation on computing environment in which the software is implemented.

The article is organized as follows. In section 2, the contribution of the present work with respect
to related works is discussed. Section 3 provides mathematical settings and preliminary definitions.
Section 4 describes the Preconditioned Scalable 3DVAR (S3DVAR) Computational Kernel while
in section 5 we discuss results concerning the accuracy and the efficiency of the S3DVAR results
on a cluster of CPUs. In section 6 conclusions are summarized.

2 Related works and contribution of the present work

Compared to other semi-enclosed and enclosed seas of the world, little is known of the Caspian
Sea variability in terms of circulation, sea level and air-sea interaction [30]. DA software able
to assimilate Sea Surface Temperature (SST) values in the Caspian Sea by keeping application
requirements (especially about the size and the resolution of the real domain) does not already
exist. In [34] the authors employ a DA model based on the simplified Kalman filter for adjust the
variances of the prediction errors by assimilating climatic temperature into the primitive-equation
model of water circulation. They present the results of an analysis of the seasonal variability of
current fields in the Caspian Sea. In [24], instead, geostrophic velocities calculated from satellite
altimetry and SST data were used together with model derived mean dynamic topography to doc-
ument and try to better understand the seasonal and interannual variations of the Caspian Sea
surface circulation. Both the approaches in [24] and [34] employ simplified models or reduced-order
approaches 2. The employment of these simplified models and reduced-order approaches alleviate
the computational cost as these methods make the running less expensive and the parameters must
still be selected a priori, nevertheless, a consequence is that important informations are missed [11].

The study and analysis of SST data collected into the Caspian Sea are object of interest of operative
Centers. The ECMWF (European Centre for Medium-Range Weather Forecasts) provides analy-
ses of SST as interpolations to the model grid of daily global datasets provided by The Metoffice
in UK, with backup from OSTIA [47]. However, they provide just analysis of the data, while, at
the moment, a scalable software for assimilating SST collected into the Caspian Sea is not available.

In this work, to better adapt the DA model and its implementation into a software with the
physical phenomena object of our studies, we follow the problem-to-solve approach introduced
into the previous section and we face the following issues:

1. physical and mathematical assumptions concerning the forecasting and observed data:
The forecasting data which represent SST values into the Caspian Sea are produced by using
the Regional Ocean Modeling System3 (ROMS). The observations are satellite data pro-
vided by the Group of High resolution sea surface temperature4 (GHRSST). We employ data
collected in two of the months which present the most significant variability in water tem-
perature: August and March [31]. The SST variabilities in the Caspian Sea have different
characteristics in the different regions [30]. Caused their diversities, sometimes the studies

2The terms “order reduction” are used [8] to identify approaches able to lower the computational complexity
of simulation problems. By a reduction of the model’s associated state space dimension or degrees of freedom,
an approximation to the original model is computed. This reduced-order model can then be evaluated with lower
accuracy but in significantly less time.

3ROMS, Web page: www.myroms.org.
4GHRSST, Web page: www.ghrsst.org.
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focus on the Northern Caspian, Middle Capian or Southern Caspian separately. This pecu-
liarity suggests that a math DA model able to opportunely assimilate data on different parts
of the domain indipendently could be recommended.

In the present work we employ the DA model described in [14, 15] based on a domain decom-
position approach which splits the DA problem (let us say, the global problem) into several
DA problems which reproduce the DA “global” problem at smaller dimensions (let us say,
the local problems). About observed data, we use a spatial distribution named ”model dis-
tribution” [46] which consists in assigning observed data to their related geographical regions.

2. the algorithmic strategies: The Data Assimilation is an ill posed inverse problem. Since a
crucial point into DA models is the ill conditioning of the covariance matrices involved, it
is mandatory to introduce, in a DA algorithm, preconditioning methods. The inherent ill
conditioning of covariance matrices was investigated in the literature in different applications
[21, 35]. In DA applications the behaviorof the condition number with respect to sampling
distance, number of data points, domain size, for Gaussian-type covariances has been studied
in [13, 25, 44]. Some of the relevant DA operative software [1, 6, 20] adopt the Empirical
Orthogonal Functions (EOFs) method in order to reduce the ill conditioning and remove the
statistically less significant modes which could add noise to the data assimilation estimate.
EOFs implement a TSVD method. In order to improve the conditioning, only the Empirical
Orthogonal Functions (EOFs) of the first largest eigenvalues of the error covariance matrix
are considered. The EOFs (introduced by Edward Lorenz [40]) are the eigenvectors of the
error covariance matrix, its condition number is reduced as well. Even if the employment
methods as the TSVD, which strongly reduce the dimension, alleviate the computational
cost as they make the running less expensive, nevertheless, a consequence is that important
informations are missed [11]. This issue introduces a severe drawback to the reliability of the
EOFs truncation, hence to the usability of the operative software in different scenarios [27].

In the present work we employ the Tikhonov regularization which reveals to be more appro-
priate than the truncation of the EOFs as proved in [5] in which these methods are been
applied to the Mediterranean sea data as well. In [5] the regularization parameter is computed
by an algorithm based on a Regularization and Perturbation error estimates with respect to
a reference solution provided by the EOFs truncation. Here we provide an estimation of the
regularization parameter which is independent from any reference solution. We face experi-
mentally the problem concerning the selection of an optimal regularization parameter picked
to minimize both:

– condition number of the DA problem after the preconditioning;

– a relative Preconditioning Error defined to provide an estimate of how much the pre-
conditioned problem differs from the starting problem.

We evaluate the order of the error magnitude into the solution of the DA problem which
reveals to be smaller by using the Tikhonov regularization with respect to the truncation of
the EOFs.

3. scalability expectation on the computing environment in which the software is implemented:
concerning the design of the algorithm to adapt to the evolutions of the node architectures,
we focus on the important feature of the algorithm to be scalable [22]. Here scalability refers
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to the capability of the algorithm to exploit performance of emerging computing architectures
in order to minimise the time to solution for a given problem with a fixed dimension (strong
scaling) (see [19, 18] as examples of works using both different and equivalent approaches).

In the present work, we show that although the Tikhonov regularization method results more
expensive that the trucated EOFs in terms of time complexity, it is more efficient in terms
of scalability:

– we validate theoretical results based on the evaluation of the Scale-Up factors [3, 4, 2]
with experiments on a testbed which is an HPC environment.

Then we can conclude that the Tikhonov regularization method turns out to be more suitable
to be used for our implementation on an HPC architecture with respect to the truncation of
the EOFs.

3 Preliminaries

In this section we recall some preliminary concepts and definitions that we will use throughout the
article [14, 33].

Definition 1 (The Data Assimilation problem) Let Ω = {xj}j=1,...,N be a spatial domain
and let [0, T1] = {tk}k=0,1,...,M be a time window. Let

uMk ≡ u(tk) ∈ <N (1)

be a vector denoting the state of a sea system (it is often called background). At time tk it is
u(tk) =M (u(tk−1)) with M : <N 7→ <N evolutive model often called forecasting model.
At each time step tk, let be

vk = Hk(uk) ∈ <p (2)

the vector of observations where Hk : <N 7→ <p is a non-linear interpolation operator collecting
the observations at time tk.
The aim of DA problem is to find an optimal tradeoff between the current estimate of the system
state (the background) in (1) and the available observations vk in (2).

Remark 3.1 Let be p = N , that is the observations vk in (2) are collected in the same space where
the background uMk in (1) is defined for each time tk. Then, the interpolation operator Hk is the
identical operator and we denote it with Ik.

Definition 2 (3D Variational (3DVAR) Data Assimilation) For a fixed time tk = t0, the
3DVAR computational model is a non-linear least square problem:

uDA0 = argminu0
J(u0)

with J (which is called cost-function) such that:

J(u0) = ‖u0 − uM0 ‖2B + ‖H(u0)− v‖2R (3)

where R and B are the covariance matrices whose elements provide the estimate of the errors on
vk and on uM0 respectively.

c© 2018 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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Definition 3 (Domain Decomposition) The set of overlapping sub-domains

DD(Ω) = {Ωi}i=1,...,Nsub
(4)

is a decomposition of the domain Ω ⊂ <N , if Ωi ⊂ <ri , ri ≤ N and for i = 1, . . . , Nsub, it is such
that

∪Nsubi=1 Ωi = Ω (5)

with

Ωi 6= ∅

and

Ωi ∩ Ωj = Ωij 6= ∅

Definition 4 (Domain Decomposition based 3DVAR (DD-3DVAR) Data Assimilation)
Let DD(Ω) = {Ωi}i=1,...,Nsub

be an overlapping decomposition of the physical domain Ω as defined
in (4).
For a fixed time tk = t0, according to this decomposition, the DD-3DVAR computational model is
a system of Nsub non-linear least square problems:

uDA0i = argminu0i
Ji(u0i)

and Ji such that:

Ji(u0i) = ‖u0i − uM0i ‖
2
Bi + ‖Hi(u0i)− vi‖2Ri + ‖u0ij − u0ji‖2Bij (6)

where

• u0i and v0i are the same vectors u0 and v0 in (1) and (2) defined on the subdomain Ωi;

• u0ij and u0ji are the vectors u0i and u0j on Ωij respectively;

• Ri and Bi are the covariance matrices whose elements provide the estimate of the errors on
v0i and on uM0i respectively;

• Bij is the background error covariance matrix defined on Ωij.

Then

uDA0 =

Nsub∑
i=1

ũDA0i where ũDA0i =

{
uDA0i on Ωi
0 on Ω− Ωi

(7)

Definition 5 (Singular Value Decomposition) Let A ∈ <N×M where N ≥M and let

A = UΣWT (8)

be the singular value decomposition (SVD) of A where U ∈ <N×N and W ∈ <M×M are orthogonal
(or orthonormal) matrices and

Σ = diag(σj)j=1,...,N

where singular values σj appear in decreasing order:

σ1 ≥ σ2 ≥ . . . ≥ σN > 0 .
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If A is a matrix of an over-determined linear system then the discrete problem is ill posed, it
is needed to filter out the contribution to the solution corresponding to the smallest singular
values [28, 29]. In this case, it might make sense to look at the matrix numerical rank [23] and
Singular Value Decomposition (SVD) enables us to deal with this concept. Filtering can be sharp
(by recurring to the Truncated Singular Value Decomposition) or smooth (by recurring to the
Tikhonov Regularization Matrix) as given in the following definitions:

Definition 6 (Truncated Singular Value Decomposition) Let A = UΣWT be the SVD of
A as in (8). Let Φtrnc ∈ <N×N be a matrix such that

Φtrnc = diag(1, 1, 1, . . . 1︸ ︷︷ ︸
trnc

, 0 . . . , 0) , (9)

with 1 ≤ trnc ≤ N . Then the matrix

Atrnc := UΦtrncΣW
T , (10)

is the truncated SVD (TSVD) matrix for S.

Definition 7 (Tikhonov Regularization Matrix) Let A = UΣWT be the SVD of A as in (8).
Let ΦTikh(λ) ∈ <N×N be a matrix such that

ΦTikh(λ) = diag

(
σ2
j

σ2
j + λ2

)
j=1,...,q

, (11)

with
√
σN ≤ λ ≤

√
σ1. Then, the matrix

ATikh(λ) := UΦTikh(λ)W
T , (12)

is the Tikhonov regularization matrix for S.

4 The Preconditioned Scalable 3DVAR Computational Kernel

Hereafter we provide a synthetic formalization of the data assimilation model we have implemented
in Algorithm 1 and Algorithm 2 underlying the corrispondence between the algorithms steps and
the mathematical-numerical issues we have faced.

The most popular software, developed in the operative centers, implement the so called incremen-
tal formulation of a 3DVAR DA model [1, 6, 20]. Here we consider the scalable version of the
incremental DD-3DVAR cost function in (6) which is defined on a decomposition of the domain:

Ji(wi) =
1

2
wTi wi+λi

1

2
(HiViwi−di)TR−1i (HiViwi−di)+µi

1

2
(Vijw

+
i −Vijw

−
i )T (Vijw

+
i −Vijw

−
i )

(13)
where

• Hi (Step 2 of Algorthm 1) is the matrix obtained by the first order approximation of the
Jacobian of Hi:

Hi(u) = Hi(u+ δu) +Hi δu,

• di = [vi −Hi(uMi )] (Step 3 of Algorthm 1) is the misfit,

• wi = V Ti δxi, with Vi such that Bi = ViV
T
i (Steps 6 and 8 of Algorthm 1),

c© 2018 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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• Vij is such that Bij = VijV
T
ij ,

• w+
i = wi on Ωij and w−j = wj on Ωij .

• Ri is such that

Ri = εoIi (14)

Steps 9-14 of Algorthm 1 computes the minimum of the cost function Ji in (13) by using the
L-BFGS method [45].

The convergence rate of L-BFGS depends on the conditioning of the numerical problem, i.e. it
depends on the condition number of the preconditioned Hessian of the cost function (13) [26] which
is:

Di = Ii + (HiVi)
TR−1i HiVi. (15)

Let be Hi = Ii, that is under the hypothesis of Remark 3.1, and let µ(·) denotes the condition
number [28], from (14) and for the properties of the condition number, it descends immediately:

µ(Di) ' 1 +
1

ε2o
µ(Vi)

2 . (16)

The accuracy and efficiency with which the minimization problem (13) can be solved is determined
by the condition number of the error covariance matrix Vi in (15) and (16) [26, 14]. As Vi is ill
conditioned, preconditioning methods must be used for improving its conditioning [44]. Then, the
matrix Vi (see Step 7 of the Algoritm 1) is computed by Algorithm 2 which implements two pre-
conditioning approaches: the truncation of the Empirical Orthogonal Functions (EOFs) method
which consists of a TSVD of the matrix (see (10)) and the Tikhonov regularization method (see
(12)). In section 5 we use some parameters to evaluate accuracy and efficiency for some case studies.

Algorithm 1 the S3DVAR algorithm on each subdomain Ωi

1: Input: vi and uM0i
2: Define Hi . interpolation operator
3: Compute di ← vi −Hiu

M
0i . compute the misfit

4: Define Ri . covariance matrix of the observed data vi
5: Define the initial value of δuDAi
6: Compute the covariance matrix Vi by a temporal sequence of hystorical data {uMki }k=0,...,M

7: Compute V̂i = PECM(PrecondType, ind,N,M, Vi) . See Algorithm 2 for details
8: Compute wi ← V̂ Ti δu

DA
i

9: repeat . start of the L-BFGS steps
10: Send and Receive the boundary conditions from the adjacent domains
11: Compute Ji ← Ji(wi)
12: Compute gradJi ← ∇Ji(wi)
13: Compute new values for wi
14: until (Convergence on wi is obtained) . end of the L-BFGS steps
15: Compute uDA0i ← uM0i + V̂iwi

end

c© 2018 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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In [1, 6, 20] the conditioning of Vi is reduced by truncating the EOFs of Vi, i.e. a matrix V trnci is
computed by using the TSVD of Vi. Here we introduce in Algorithm 2 the use of the Tikhonov

regularization matrix V
Tikh(λ)
i which reveals to be more appropriate than truncation of EOFs [5].

Algorithm 2 the Preconditioning Error Covariance Matrix (PECM) algorithm

1: Input: PrecondType, N , M , Vi
2: Compute Vi = UΣWT . compute the SVD of the matrix Vi
3: if (PrecondType = EOFS) then
4: Compute trnc . compute the truncation parameter in (9)
5: Compute V̂ = TSV D(Vi, trnc) . Truncated SVD regularized matrix V̂ = UΦtrncΣW

T

6: else . PrecondType = Tikhonov
7: Compute λopt . compute the regularization parameter in (11)

8: Compute V̂ = Tikhonov(Vi, λopt) . Tikhonov regularized matrix V̂ = UΦTikhW
T

9: end if

end

The solutions computed on the subdomains Ωi by Algorithm 1 and Algorithm 2 are then collected
to provide the global solution as in (7). In order to guarantee continuity of the solution along the
overlapping regions we force the solution to satisfy the condition:

uDA0 /Ωij = mean(uDA0i /Ωij , u
DA
0j /Ωij), ∀Ωij = Ωi ∩ Ωj 6= 0.

where mean(·, ·) denotes the mean value.
In the next section we face the choice of the regularization parameter λ (Step 7 in Algorithm
2) and the truncation parameter trnc (Step 4 of Algorithm 2) and we provide results of the DA
minimization problem (13) obtained by considering both preconditioning methods.

5 Implementation Details and Permormance Analysis

Here we focus on the main computational issues we faced by implementing Algorithm 1 and Al-
gorithm 2 and we present a performance analysis both in terms of accuracy and efficiency of the
results obtained by introducing the Tikhonov regularization method compared to the truncated
EOFs.

The background data (defined in (1)) we consider are provided by the software ROMS. The satellite
observations (defined in (2)) provided by the GHRSST give us information about the SST every
day of the selected months at 12:00am according with the data provided by ROMS.

Background and observed data are defined on the same spatial domain, which means that hypoth-
esis of Remark 3.1 are satisfied, and the discretization grid has dimension

N = N1 ×N2 = 780× 560 . (17)

Then the problem size is O(106).

We employ the DD-3DVAR model in (13). Due the geometry of the domain, we decided to intro-
duce a domain decomposition, as defined in (4), along the coordinates N1. In Figure 1 is shown
an example on horizontal decomposition obtained for Nsub = 4. Then we emply Algorithm 1 and

c© 2018 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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(a) (b)

Figure 1: Values of Sea Surface Temperature collected into the Caspian Sea on (a) March 2008
and (b) August 2008 and an example of decomposition obtained along the coordinate N1 for a
number of subdomain Nsub = 4.

Algorithm 2 on each subdomain Ωi of the decomposition in parallel.

The architecture we use for developing is a distributed memory architecture made of 8 DELL
M600 blades connected by a 10 Gigabit Ethernet technology. Each blade consists of 2 Intel
Xeon@2.33GHz quadcore processors sharing the same local 16 GB RAM memory for a total of 16
processors. We implemented the algorithm in the MATLAB R©computational environment using
some of its native procedures (i.e., to compute SVD and TSVD of matrices) and external toolboxes
such as the Parallel Computing Toolbox and the MATLAB interface for L-BFGS-B routine. We
observe that the MATLAB Parallel Computing toolbox is able to exploit different kind of comput-
ing architectures: multicore nodes, cluster of nodes and heterogeneous computing systems.

Experiments are provided on data collected in two peculiar months: August 2008 and March 2008
[30] and the chosen starting point for assimilating data is been fixed as the first of August and the
first of March respectively.

5.1 Setting Up of the regularization and truncation parameters

We face experimentally the problem concerning the selection of an optimal regularization parameter
picked to minimize both:

- condition number of Vi after the preconditioning, i.e. condition number of V
Tikh(λ)
i ;

c© 2018 European Society of Computational Methods in Sciences and Engineering (ESCMSE)
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- a relative Preconditioning Error defined to provide an estimate of how much the precondi-
tioned problem differs from the starting problem.

We have computed matrix Vi in Step 6 of Algorithm 1 by considering two temporal sequence of
data collected in August 2008 and March 2008. Then we have applied the Tikhonov regularization

method in Step 8 of Algorithm 2 which has provided V
Tikh(λ)
i with values of λ such that:

0 =
√
σN ≤ λ ≤

√
σ1 = 49.35

for data collected in August and

0 =
√
σN ≤ λ ≤

√
σ1 = 62.89

for data collected in March, and we have computed the condition number of V
Tikh(λ)
i as function

of λ.

The trends of the computed condition number in Figure 2 confirm our expectation. Infact, as the

condition number µ(V
Tikh(λ)
i ) is such that [29]:

µ(V
Tikh(λ)
i ) ' σ1

2
√
λ
, (18)

it is

lim
λ→0

µ(V
Tikh(λ)
i ) = +∞, lim

λ→+∞
µ(V

Tikh(λ)
i ) = 0, (19)

0 sqrt(
1
)

10 -1

10 0

10 1

10 2

10 3

0 sqrt(
1
)

10 -1

10 0

10 1

10 2

10 3

(a) (b)

Figure 2: condition numbers of the matrix V
Tikh(λ)
i where (a) 0 =

√
σN ≤ λ ≤ √σ1 = 49.35 for

data collected in August and (b) 0 =
√
σN ≤ λ ≤

√
σ1 = 62.89 for data collected in March.

In Figure 3, instead, we have evaluated the relative Preconditioning Error defined as:

Eλ =
‖Σ− ΦTikh(λ)‖∞

‖Σ‖∞
. (20)

which provides an estimate of how much the preconditioned problem differs from the starting
problem.
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1
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E

0 sqrt(
1
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1

1.1
E

(a) (b)

Figure 3: values of the relative error Eλ where (a) 0 =
√
σN ≤ λ ≤

√
σ1 = 49.35 for data collected

in August and (b) 0 =
√
σN ≤ λ ≤

√
σ1 = 62.89 for data collected in March.

As confirmed by results in Figure 3, it is

lim
λ→0

Eλ =
‖Σ− I‖∞
‖Σ‖∞

' 1− 1

σ1
, lim

λ→+∞
Eλ =

‖Σ‖∞
‖Σ‖∞

= 1 (21)

As λ is subject to the constraints [28]
√
σN ≤ λ ≤ √σ1, we have that, from (19), the smallest

value of the condition number is obtained for λ ' √σ1. From (21), however, the smallest error is
obtained for λ ' 0 =

√
σN . Then, we observe that the optimal value λ = λopt should be such that:

λopt ' mean(
√
σN ,
√
σ1). (22)

Figure 4 confirms this observation and in Table 1 are reported the values computed as intersection

of the curves described by µ(V
Tikh(λ)
i ) and Eλ for data collected in August and March.

The truncation parameter, instead, is been chosen by evaluating the numerical rank of Vi [5, 29, 28]
such that

σtrnc >> trnc >> σtrnc+1

then by studying the spectrum of the matrix Vi computed in Step 6 of Algorithm 1. In our case
study, it is trnc = 20 both for August and March;

5.2 Validation of the results

Let p denotes the number of processors involved, in the following we assume

Nsub ↔ p , (23)

i.e. each subdomain is assimilated on a processor.

Validation is carried out by performing the following steps:
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Figure 4: values of (a) λopt = 34.899 and (b) λopt = 44.463 computed as intersection of the curves

described by µ(V
Tikh(λ)
i ) and Eλ where (a) 0 =

√
σN ≤ λ ≤ √σ1 = 49.35 for data collected in

August and (b) 0 =
√
σN ≤ λ ≤

√
σ1 = 62.89 for data collected in March.

1. Analysis of the results in terms of accuracy based on the errors evaluation:

We evaluate the order of magnitude of the errors into the solution computed by using both
the Tikhonov regularization and the EOFs

errTikh(λopt) = ‖uDA(Tikh(λopt))
0 − vC‖∞ , errEOFs = ‖uDA(EOFs)

0 − vC‖∞ (24)

where vC is the control variable provided by the Space and Atmospheric Physics Group at
Imperial College London for these hystorical data collected into the Caspan Sea. We show
the results obtained as function of the number Nsub of subdomains which constitute the
domain decomposition.

Figure 5 shows the values of the errors errTikh(λopt) and errEOFs as function of p = Nsub
for data collected in (a) August 2008 and in (b) March 2008. Details about these values are
also provided in Table 2.
Results carried out from the assimilation of the data collected in March 2008 present a small
increase of the error into the DA solution. It is because in March the presence of ice [30, 48]
imply a reduction into the accuracy of the data, then (as also stated in [27]) a consequence
is that the reliability of the EOFs truncation, hence its usability into operative software, is
disadvantageous. Accuracy into the solution provided by considering the Tikhonov regular-
ization method is instead maintained.
For both sets of results it holds that:

errTikh(λopt)

errEOFs
' O(10−1)

which means that the Tikhonov regularization method provides a solution with an error of
one order of magnitude smaller then the truncation of the EOFs.

2. Analysis of the results in terms of efficiency :
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λopt−∆λ λopt λopt+∆λ

λ 14.764 20.445 24.859 28.601 31.906 34.899 37.656 40.224 42.638 44.922 47.095

Eλ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

µλ 5.5860 2.9133 1.9705 1.4887 1.1962 0.9998 0.8588 0.7526 0.6698 0.6034 0.5490

(a)

λopt−∆λ λopt λopt+∆λ

λ 31.257 34.307 37.108 39.711 42.154 44.463 46.658 48.754 50.764 52.697 54.561

Eλ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

µλ 2.0240 1.6801 1.4360 1.2539 1.1128 1.0002 0.9083 0.8319 0.7673 0.7121 0.6642

(b)

Table 1: values of (a) λopt = 34.899 and (b) λopt = 44.463 computed as intersection of the curves

described by µ(V
Tikh(λ)
i ) and Eλ where (a) 0 =

√
σN ≤ λ ≤ √σ1 = 49.35 for data collected in

August and (b) 0 =
√
σN ≤ λ ≤

√
σ1 = 62.89 for data collected in March.

(a) (b)

Figure 5: Values of errors errTikh(λopt) and errEOFs as function of p = Nsub for data collected in
(a) August 2008 and in (b) March 2008.

We evaluate the performance of the software in terms of execution times and scalability. We
evaluate the Scale Up factor [3, 14] which is (by assuming (23)) defined as:

SMethod
p1,p2

=
T (A(p1,Method))

(p2/p1)T (A(p2,Method))
(25)

where

• Method denotes one of the methods: Tikhonov regularization or truncation of EOFs
implemented in Algorithm 2;

• A(p,Method) denotes the Algorithm obtained from Algorithm 1 on p processor and
Algorithm 2 with PrecondType = Method,
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p errTikh(λopt) errEOFs

1 - 2.153218920796193458500056e+02
2 2.922676086425781250000000e+01 1.985537308080609477656253e+02
4 2.922676086425781250000000e+01 1.920829574240959800590645e+02
8 2.922676086425781250000000e+01 1.709302357650879002903821e+02
16 2.922676086425781250000000e+01 1.778700303366430546248012e+02

(a)

p errTikh(λopt) errEOFs

1 - 4.069147530943650536983114e+01
2 1.148108196258544921875000e+01 4.363353211828277267159137e+01
4 1.148108196258544921875000e+01 4.754367594091701221259427e+01
8 1.148108196258544921875000e+01 4.672725439802213998063962e+01
16 1.148108196258544921875000e+01 5.556904118757078947510308e+01

(b)

Table 2: Values of errors errTikh(λopt) and errEOFs as function of p = Nsub for data collected in
(a) August 2008 and in (b) March 2008.

• T (A(p1,Method)) denotes the time complexity of the Algorithm A(p,Method) by us-
ing p1 processor and T (A(p2,Method)) denotes the time complexity of the Algorithm
A(p,Method) by using p2 processor (p2 ≤ p1).

Concerning the estimate of the theoretical Scale Up Factor values as defined in [14] we can
affirm that

STikh(λopt)p1,p2
> SEOFSp1,p2

. (26)

Infact, as

T (A(p1, T ikh(λ))) ' O(N3) (27)

and
T (A(p1, EOFs)) ' O(trnc ·N2). (28)

Let be N = N1 ×N2 as in (17). By considering (25), and by considering that we decompose
just along N1, it holds that for:

• Method = Tikh(λ), then by using (27) in (25), it is:

STikh(λopt)p1,p2
'

N3
1

p3
1
N3

2

(p2/p1)
N3

1

p3
2
N3

2

'
(
p2
p1

)2

. (29)

• Method = EOFs, then by using (28) in (25), it is:

SEOFSp1,p2
'

trnc
N2

1

p2
1
N2

2

(p2/p1) trnc
N2

1

p2
2
N2

2

' p2
p1

; (30)
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Then from (29) and (30), the (26) follows.

The result provided in (26) suggests that the Tikhonov regularization method better exploit
the resurces provided by an HPC computing environment for solving the minimization DA
problem in (13). It is been confirmed by the experimental results we carried out. In fact, the
Tikhonov regularization method results more expensive that the trucated EOFs in terms of
execution times (as shown in Figure 6 (a) and (b)). However, values of measured Scale Up,
as in Figure 6 (c) and (d), show as it is more efficient in terms of scalability.

(a) (b)

(c) (d)

Figure 6: Execution times as function of the number of subdomains for data collected in (a) August

and (b) March 2008 and values of the Measured Scale Up S
Tikh(λopt)
p1,p2 and SEOFsp1,p2

as function of
the number of subdomains for data collected in (c) August and (d) March 2008

Then we may conclude that the employment of the Tikhonov regularization method is more
suitable for the data assimilation algorithm we are developing for the data collected into the
Caspian sea when it is implemented on an HPC architecture such as a cluster of CPUs.
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6 Conclusions

We have presented first results obtained introducing two different preconditioning methods (namely
the Tikhonov regularization method and the truncated EOFs) in a DA software we are developing
(we named S3DVAR) which implements a Scalable Three Dimensional Variational Data Assimila-
tion model for assimilating sea surface temperature (SST) values collected into the Caspian Sea by
using the Regional Ocean Modeling System (ROMS) with observations provided by the Group of
High resolution sea surface temperature (GHRSST). We have presented the algorithmic strategies
we have employed and the numerical issues on data collected in two of the months which present
the most significant variability in water temperature: August and March. We have evaluated the
performance obtained both in terms of accuracy and efficiency. Results we carried out show how
the Tikhonov regularization method is more accurate in terms of mean error. Also, although the
Tikhonov regularization method results more expensive that the trucated EOFs in terms of execu-
tion time, we proved that it is more efficient in terms of scalability on HPC architectures. Then we
can conclude that the Tikhonov regularization method is more suitable for the data assimilation
algorithm we are developing for the data collected into the Caspian sea.
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