
European Society of Computational Methods
in Sciences, Engineering and Technology
(ESCMSET)

Journal of Numerical Analysis,
Industrial and Applied Mathematics

(JNAIAM)
vol. 7, no. 3-4, 2012, pp. 91-105

ISSN 1790–8140

HPC computation issues of the incremental 3D variational

data assimilation scheme in OceanVar software∗ †

L. D’Amore1‡, R. Arcucci2, L. Marcellino3 and A. Murli2

1. Department of Mathematics and Application, University of Naples Federico II, Italy.
2. Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Italy.
3. Department of Applied Sciences, University of Naples Parthenope, Italy.

Received 30 January, 2012; accepted in revised form 22 December, 2012

Abstract: The most significant features of Data Assimilation (DA) are that both the models
and the observations are very large and non-linear (of order at least O(108)). Further, DA
is an ill-posed inverse problem. Such properties make the numerical solution of DA very
difficult so that, as stated in [19], ”solving this problem in ”real-time” it is not always pos-

sible and many different approximations to the basic assimilation schemes are employed”.
Thus, the exploitation of advanced computing environments is mandatory, reducing the
computational cost to a suitable turnaround time. This activity should be done according
to a co-design methodology where software requirements drive hardware design decisions
and hardware design constraints motivate changes in the software design to better fit within
those constraints.
In this paper, we address high performance computation issues of the three dimensional
DA scheme underlying the oceanographic 3D-VAR assimilation scheme, named Ocean-
VAR, developed at CMCC (Centro Euro Mediterraneo per i Cambiamenti Climatici), in
Italy. The aim is to develop a parallel software architecture which is able to effectively
take advantage of the available high performance computing resources.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology

keywords: Data Assimilation, Inverse Problem, Parallel Software, Oceanography

MSC: 65Y05, 65F22, 65Z05

PACS: 02.30.Zz

1 Introduction

Over the last two decades or so, Data Assimilation has expanded into quite a mature and mo-
tivating area of research and applications (see [15, 17] and references therein). It seems clear

∗This work has been carried out within the collaboration of the CMCC (Centro Euro Mediterraneo per i Cam-
biamenti Climatici), Italy. We are grateful to N. Pinardi and S. Dobricic to make concession for using OceanVAR.

†Published electronically December 15, 2012
‡Corresponding author. E-mail: luisa.damore@unina.it

92 L. D’Amore, R. Arcucci, L. Marcellino and A. Murli

that improvements in skill of Numerical Ocean Prediction are essentially due to following priority
activities[8]:

1. the development of ever more powerful computers, allowing much finer numerical resolution
and fewer approximations in the operational oceanic models;

2. the improved representation of small-scale physical processes (clouds, precipitation, turbulent
transfers of heat, moisture, momentum, and radiation) within the models;

3. the use of more accurate methods which result in improved initial conditions for the models;

4. and the increased availability of data, especially satellite and aircraft data over the oceans
and the Southern Hemisphere.

Moreover, the primary need to ensure a successful achievement of the benefits deriving from these
activities is to advocate increased relationship and interactions among them.

In this paper we focus on the item 3 and in particular we address the impact of the availability
of high performance computing resources on the development of effective DA software, within the
co-design methodology’s perspective. The aim of co-design is to reduce the large gap between the
peak performance of supercomputers and the actual performance realized by today’s applications.
This architecture-application performance gap will get even wider with the increase in comput-
ing power being driven by a rapid escalation in the number of cores incorporated into a single
chip. Co-design methodology depends on a bi-directional optimization of design parameters where
software requirements drive hardware design decisions and hardware design constraints motivate
changes in the software design to better fit within those constraints.
We consider the OceanVar software [4], used in Italy to produce forecasts of ocean currents to the
Mediterranean Sea. OceanVAR software implements an oceanographic three-dimensional varia-
tional DA scheme.

We start from the existing sequential code, and in order to take into account both the software
requirements and the system architecture, we introduce a fine-to-coarse parallelization strategy us-
ing the standard fine-grained concurrency of the floating-point operations, and the coarse-grained
concurrency on the problem decomposition. This is essentially due to the different amounts of
available parallelism of OceanVAR computations. This approach is suited for exploiting the mul-
tilevel parallelism that characterizes the architecture of concurrent multiprocessors composed of
many-core CPUs. The fine-grained parallelism is aimed at extracting concurrency of multi-cores
nodes. The coarse-grained parallelism is oriented to exploit internode concurrency of MIMD mul-
tiprocessors because it does not require a strong cooperation among processors.

The paper is organized as follows. In the next section we describe the DA scheme employed in
OceanVar, from the numerical analysis point of view, in section 3 we discuss its conditioning and
we analyze the benefits obtained from using the Cholesky factorization or the Truncated Singular
Value Decomposition. In section 4 we analyze the OceanVAR parallel software co-design, we
estimate the execution time underlining the more expensive routines in term of computational cost
and we explain how we have introduced multi threading version of scientific libraries and their
parallel version. In section 5 we report experiments and analyze performance results, while the
section 6 concludes the paper.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar 93

2 DA cycle in OceanVar

Let ti, i = 0, 1, . . . , n be a sequence of observation times and, for each i, let xi ≡ x(ti) ∈ ℜ
N be the

vector denoting the state of the Mediterrean sea system at time ti. The state vector considered in
OceanVar contains the following variables:

xi = [T, S, η, u, v]T ,

where T is the three-dimensional temperature field, S the three-dimensional salinity field, η the
two-dimensional free surface elevation, and u,v are the total horizontal velocity components.
LetM(P) the mathematical model describing the evolution of the Mediterranean system. In par-
ticular,M(P) describes the evolution of the state vector xi from ti to ti+1, and it can be expressed
as follows:.

M(P) : xi+1 = Li,i+1(xi), i = 0, 1, . . . , n− 1 (1)

Starting from the initial state x0 = x(t0), which is assumed to be known,M(P) provides the state
vector at time ti+1 using the state vector at time ti. This operation is described by Li,i+1 : ℜN 7→
ℜN which is the non-linear operator describing how the the model acts from ti to ti+1.
Moreover, let

yi+1 = H(xi+1) + ǫi+1 i = 1, 2, . . . , n− 1 (2)

be the observations vector at time ti+1, where yi+1 ≡ y(ti+1) ∈ ℜ
p and H : ℜN 7→ ℜp is the

non-linear operator collecting the observations at each time ti.

For each i = 1, 2, . . . , n, let xDA(ti) be the so-called analysis, i.e. the estimation of the vector xi

at time ti, obtained by using DA. OceanVAR performs DA in a sequential manner, with a time
series of assimilation cycles:

For each i = 1, 2, . . . , n− 1 do

Data Assimilation cycle (i, i+ 1),:

1. given xDA(ti),

2. model integration (1):
computation of xi+1, using xDA(ti) as initial value,

3. correction of xi+1 due to observations (2):
computation of xDA(ti+1) as the best estimate of (xi+1, yi+1).

4. provide xDA(ti+1).

As a new set of observations become available the cycle is repeated. This analysis is then propa-
gated in time.

Here we are interested on how any numerical error affecting xDA(ti) propagates on xDA(ti+1). To
this aim we perform the Forward Error Analysis (F.E.A.):

Forward Error Analysis on one DA cycle: Let us assume that the DA cycle is performed on
a finite precision arithmetic system. Let x̃DA(ti) denote the numerical value of xDA(ti). x̃DA(ti)
is corrupted by the presence of different kind of errors, resulting from the numerical approach
(discretization, round-off, ...), all these errors can be referred by δi. By the same way, x̃i+1,
indicates the perturbed value of xi+1. We get the following steps:

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

94 L. D’Amore, R. Arcucci, L. Marcellino and A. Murli

1. given x̃DA(ti) = xDA(ti) + δi,

2. model integration (1):
computation of x̃i+1, using x̃DA(ti) as initial value:

x̃i+1 = Li,i+1(˜xDA(ti))

By applying the F.E.A. on (1) we have that:

x̃i+1 = xi+1 + σi (3)

and:

σi = CA µL δi (4)

where the constant CA depends on the numerical algorithm used for solving (1) and µL

depends on the condition number of Li,i+1.

3. correction of x̃i+1 due to observations (2):
computation of x̃DA(ti+1) as the best estimate of (x̃i+1, yi+1).

4. provide
x̃DA(ti+1) = xDA(ti+1) + ηi (5)

and:

ηi = CDAµDAδi (6)

where the constant CDA depends on the numerical algorithm used by the DA scheme and
µDA depends on the condition number of the DA operator.

The above analysis says that the initial error δi on xDA(ti) propagates twice: on the numerical
value of the state vector trough (4), and on the DA vector analysis through (6).
Next section focuses on the amplification factors of the DA scheme in OceanVAR.

3 Conditioning of 3DVar scheme in OceanVAR

For each time step ti, the computational kernel of the 3DVar scheme employed in OceanVAR is
the following non-linear least square problem:

xDA(ti) = argminxJ(x) = argminx

{
‖H(x)− yi‖

2
R + ‖x− xi‖

2
B

}
(7)

R and B are the covariance matrices, whose elements provide the estimate of the errors on yi and
on xi, respectively. As well known, they have a normal (or Gaussian) distribution. Here, ‖x‖R
and ‖x‖B denote the weighted euclidean norms ‖x‖R = xTR−1x and ‖x‖B = xTB−1x.
By using the following linearization of H:

H(x) = H(z) +H(x− z)

whereH is the matrix obtained by the first order approximation of the Jacobian ofH, the functional
J is:

J(x) = (Hx− yi)R
−1(Hx− yi)

T + (x− xi)B
−1(x− xi)

T . (8)

The minimizer of (8) is obtained by requiring that the Jacobian of J is zero, ∇J = 0. This gives
rise to the linear system:

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar 95

Aδx = b (9)

where

A = B−1 +HTR−1H, (10)

b = B−1xi +HTR−1yi and δx = x− xi.

Matrix A is ill conditioned [18].
If we assume that the observations yi are direct measurements of the state variables xi, then HTH

is a diagonal matrix, where the k-th diagonal element is unity if the k-th state variable is observed
and is zero otherwise. Moreover, as in [9], we fix:

R = e2oI (11)

where eo is the estimated error on yi and

B = e2bC (12)

where eb is the estimated error on xi. The matrix B is a Gaussian matrix, if we assume that it is
shift invariant also, then we have that C is a Toeplitz matrix [6] whose elements are:

cij = exp

(
−∆x2

2L2
|i − j|2

)
, |i− j| <

N

2

where L is the length-scale, ∆x is the grid spacing and N is the number of grid points.
In this case, we prove the following:

Proposition: Let R as in (11), B as in (12) and HTH diagonal. Then, it follows that§:

µDA = O(e−2

b µ(C−1)) (13)

Proof :
µDA ≡ µ(A) = µ(B−1 + e−2

o HTH) ≤ µ(B−1) + e−2
o (14)

hence, from (12) it follows that:

µDA = µ(B−1) = O(e−2

b µ(C−1))

♣
Let λm denote the m-th eigenvalue of C, taking into account the structure of C eigenvalues are:

λm =

N−1∑

k=0

ckexp

(
−2πimk

N

)
(15)

that is the eigenvalues also have an exponential growth. Hence, C is ill conditioned and B too.
In order to reduce the ill conditioning of B, OceanVAR applies a two-steps transformation (pre-
conditioning and regularization):

§In the following we use the big O symbol which describes the asymptotic behavior of a function when its
argument tends towards a particular value or infinity. More precisely, we write f(x) = O(g(x) meaning that

lim
x→∞

f(x)

g(x)
= C

where C 6= 0.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

96 L. D’Amore, R. Arcucci, L. Marcellino and A. Murli

1. preconditioning: sinceB is symmetric and positive definite, OceanVAR computes its Cholesky
factorization B = V V T . By this way:

µ(B) = µ(V)−1/2

2. regularization: OceanVAR computes the Truncated SVD (TSVD) of V . If rank(V) = N

then:

V =

N∑

j=1

ujσjw
T
j = UΣWT

where U = [u1, ..., uN] and W = [w1, ..., wN] matrices are orthogonal and Σ is diagonal with
elements the singular values of V:

σ1 > σ2 > · · · > σk > · · · > σN

be the SVD of V . The TSVD, instead of using all the singular values of V discards those
that are less than a given threshold. These last ones are assumes to be numerically zero. Let
K denote the number of singular values not numerically zero, and let:

VK = UΣKWT

where Σk = diag(σ1, σ2, . . . , σk, 0, 0, . . . , 0). Since the matrix VK is better conditioned than
V , i.e.:

µ(VK) =
σ1

σK
<<

σ1

σN
= µ(V)

V is replaced by VK , which provides a better conditioned approximation of V (VK is a
regularization of V because the contribution corresponding to the smallest singular values is
filtered out [10]).

Let us express these transformations on J .

Regarding the preconditioning, let d = [y−H(x)] be the misfit, by setting v = V T δx, the operator
in (8) becomes:

J(v) =
1

2
vT v +

1

2
(HV v − d)TR−1(HV v − d) (16)

The minimizer of (16) is the solution to ∇J = 0, which gives rise to the linear system:

A′v = d. (17)

where

A′ = I + V THTR−1HV (18)

About the conditioning of the linear system in (9), we prove the following:

Proposition: It holds that:
µ(A′) == O(1 + e−2

o ebµ(C))

Proof: Since R can be written as in (11), from (18) it follows that:

µ(A′) = µ(I + V THTR−1HV) ≤ 1 + µ(V THTR−1HV) ≤ 1 + e−2
o µ(V THTHV) (19)

and
1 + e−2

o µ(V TV) = 1 + e−2
o ebµ(C)

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar 97

♣

Hence, the linear system (9) is still ill conditioned. It needs to use some sort of regularization.

Regularization. OceanVAR computes the TSVD of V and the vector vK = VKv in (16):

VKv =

K∑

j=1

ujσjw
T
j · v =

K∑

j=1

ujσjw
T
j · v (20)

In [5], experimentally was found that, by choosing K = 20, it yields the accuracy of 10−2 on the
solution.

4 Towards the OceanVAR co-design

Over the years users of high performance systems have observed dramatic increases in peak per-
formance (as we approach exaflop-scale systems, we are confronted by an exponential growth in
parallelism). Furthermore, the expectation is that future systems will be heterogeneous with nodes
composed of many-core CPUs and GPUs. Unfortunately, this growth occurs without the commen-
surate improvements in effective performance delivered to applications.
The Department of Energy’s Exascale Computing initiative has identified hardware/software co-
design as a central strategy to address this situation. The strategy means the integrated co-design
of tools, algorithms, and architectures to enable more efficient and timely solutions to applications:
rather than ask ”what kind of scientific applications can run on an exascale system after it arrives,”
this application driven design process instead asks ”what kind of system should be built to meet the
needs of the most important science problems.”
The methodology depends on a bi-directional optimization of design parameters where software
requirements drive hardware design decisions and hardware design constraints motivate changes
in the software design to better fit within those constraints.

Deep analysis of application requirements drives key design decisions for the overall system
architecture. The analysis provides quantitative measures of application requirements and relates
them back to architectural parameters such as on-chip memory, memory bandwidth requirements
and interconnect requirements. Cycle accurate simulation tools enable quantification of the per-
formance impact on the applications when they are subjected to specific hardware constraints [21].

We will focus on the structure of OceanVAR software such that it fulfills these perspectives. We
have included calls to libraries of scientific computing where possible. The use of these libraries
allows finer resolution making faster the code migration on machines other than the one on which
the software was generated.
Native hardware architecture of OceanVAR is the NEC supercomputers [3], the programming

languages are fortran 90 and fortran 77, the scientific library was Linpack (see Figure 1).
More precisely, in order to take into account both the computing requirements of each module

and the system architecture, we consider a parallelization strategies that uses the standard fine-
grained concurrency of the floating-point operations, and a coarse-grained concurrency, based on
the problem decomposition among computational nodes and introduces concurrency at a coarser
level.

This is essentially due to the different amounts of available parallelism of a given computation.
For instance, even though the coarse-grained parallelism is the most simple, under this model,
the type of computation that can be efficiently parallelized is limited. Moreover, we see that
these strategies are best suited for exploiting the multilevel parallelism that characterizes the ar-
chitecture of concurrent multiprocessors. The fine-grained is aimed at extracting concurrency of

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

98 L. D’Amore, R. Arcucci, L. Marcellino and A. Murli

Figure 1: Software architecture of OceanVAR before parallelization

internode multiple instruction multiple data (MIMD) multiprocessors, such as custom multipro-
cessors with a low-latency network connection. The coarse-grained is oriented to exploit internode
concurrency of MIMD multiprocessors. We feel that this is the best way to achieve the highest
possible performance of a given problem on a given system configuration.

4.1 Software analysis

The approach that we choose for introducing parallelism in OceanVAR exploits concurrency inside
the modules that represent the main computational bottlenecks on the way to gain performance
of the whole execution. Hence, we first perform the code analysis and profiling.

Figure 2: The two modules of OceanVAR representing the workflow of OceanVAR

The OceanVAR scheme is described in Algorithm 1.

As shown in Figure 2, the software is divided into two main modules named Calc msft and
oceanvar. Calc msft module reads from the input data file values for observations. The data files

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar 99

Algorithm 1 The OceanVAR scheme

1: Acquires the input parameters (number and size of the grid discretization, the types of ob-
servations, number of EOFs, etc.)

2: Acquires the observations and xM vector and calculate misfit d vector
3: Acquires EOFs
4: Poses vnum grid ← V+

num gridδx̄num grid

5: v1 = 0
6: for grid id← 1, num grid do

7: Calculate quantities that define the operators R−1, H and V on grid id grid
8: Calculate J(vgrid id) e ∇J(vgrid id)
9: Calculate minimum point (v̄)grid id of J(v) function from vgrid id, J(vgrid id) and
∇J(vgrid id) computation

10: Calculate vgrid id+1 as an interpolation of (v̄)grid id

11: end for

12: (δx̄)num grid ← (V)num gridvnum grid

13: x← xM + (δx̄)num grid

used in Calc msft module are of two types: ASCII and NetCDF¶ (Network Common Data Form).

From Table 1 we note that execution time of oceanvar module is the most significant part of total
execution time‖. Indeed, module oceanvar creates the mesh grid and calculates the minimum of
the function (16). The function J(v) is minimized using the L-BFGS minimizer [20].

Calc msft oceanvar

execution time 0.16 sec. 455.10 sec.

Table 1: execution time of main modules of OceanVar

In oceanvarmodule there are two main routines: ver hor and ver hor ad. These modules perform
the operations δx = Vv and v = V+δx [4], as indicated by items 4 and 12 of Algorithm 1.
More precisely, ver hor and ver hor ad provide operations between matrices, implemented using
BLAS 3, and perform about 1.7277× 1011 floating point operations.
From Table 2, we note that these routines have the greatest computational cost compared to the
total execution time of the oceanvar module (i.e. this is about the %70).

ver hor ver hor ad other

execution time 149.16 sec. 187.66 sec. 118.27 sec.

Table 2: execution time details

Then, in the next section we describe the parallelization of these two routines, whose execution
time (measured as elapsed time), from Table 2 is:

T (ver hor, ver hor ad) = 336.83

¶http://www.unidata.ucar.edu/software/netcdf/
‖The execution time of the routine was monitored using etime-function

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

100 L. D’Amore, R. Arcucci, L. Marcellino and A. Murli

4.2 Parallel approach

There are several different forms of parallel computing: bit-level, instruction level, data, and
task parallelism. Parallel computers can be roughly classified according to the level at which the
hardware supports parallelism, with multi-core and multi-processor computers having multiple
processing elements within a single machine, while clusters and grids use multiple computers to
work on the same task [2, 16].
The result of our work was to introduce into OceanVAR a prototype form of parallelism on two
levels. Indeed, taking into account the different granularity of the computational operations we
introduce concurrency during their execution. More precisely, the design of the code handled the
internode communication by a standard message-passing approach (level 2), and exploited the
every node capabilities of concurrency, assigning the local numerical computation to well-known
optimized libraries as BLAS and LAPACK (level 1).
The introduction of (level 2)-parallelism has occurred in two routines that have the greatest com-
putational cost compared to the total execution time of the entire application. These are: ver hor

and ver hor ad (step 4 and 12 of Algorithm scheme).
Within procedures ver hor and ver hor ad, the quantities free surface elevation, temperature and
salinity are calculated with different and independent operations, has therefore chosen to use an
asynchronous parallelism (an ”embarassingly” parallel approach). Therefore it was decided to dis-
tribute these data at three different 3 processors, each one composed by 8 cores.
Summarizing (see Figure 3), we used the multithreding version of Blas and Lapack, the standard
MPI for communications and BLACS to solve linear algebra operation in parallel.

Figure 3: Software architecture of OceanVAR after parallelization

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar 101

5 Experimental Results

The primary intent of this work is the exploitation of CMCC parallel computing resources in order
to reduce the overall computational cost of the OceanVar code. Because of these issues, to the aim
of the performance evaluation of the parallel algorithm, we consider only a real test case where the
discrete domain is made of 20 matrices of size 871× 253.
The computing architecture is an IBM Power6 supercomputer, consisting of 30 nodes with 16
dual-core chips. Each dual-core Power6 processor runs at 4.7 Ghz, leading to a theoretical peak of
18.8 Gflop/s per core and 601.6 Gflop/s per node (peak performance of IBM Power6).
Figure 4 shows the execution time of level 1-parallel algorithm (the plot uses a logarithmic scale).
Observe that as the core number is greater than 8 the elapsed time increases, while as the core
number is greater than 16, the performance degrades significantly. Indeed, the achievable perfor-
mance of such an application with a fixed size, depends on deep interactions among processors,
memory system and interconnected network. This means that, due to the limited amount of
available parallelism, and taking into account that each node is made of 2 bi-processors each one
consisting of 8 dual-core chips sharing the same local memory, there exists an ”optimal” number
of processors and each additional one contributes slightly less or do not. So, in our test case, this
optimal configuration it that using 8 cores.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
10

2

10
3

numer of core

E
la

p
s
e

d
 t

im
e

 (
s
e

c
s
)

−
 l
o

g
 s

c
a

le

Figure 4: Execution time of level 1-parallel algorithm versus the core number.

In the following we will only refer to the elapsed time because this can be considered equals to the
user time, as it is reported in Table 3.

Table 4 shows the elapsed time of ver hor and ver hor ad with level 1-parallelism compared
to the sequential algorithm. Note that if we focus on the problem solution in a shorter time, the
performance gain is 47, 29%, which may be acceptable.
Ayway, since we use multithreads BLAS, we expect this parallel approach to be very synchronous
and do not scale with the number of cores ∗∗. This is confirmed by the performance gain measured

∗∗Dongarra et al. [22] running a Lapack algorithm on the same architecture reaches the best efficiency (69%)

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

102 L. D’Amore, R. Arcucci, L. Marcellino and A. Murli

Time sequential version with (level 1)-parallelism.
elapsed time 455.10 sec. 244.05 sec.
user time 454.16 sec. 241.65 sec.
system time 0.95 sec. 2.40 sec.

Table 3: execution time of the oceanvar sequential version and with (level 1)-parallelism, on 8 cores

Time sequential version with (level 1)-parallelism.
elapsed time 336.83 sec. 123.83 sec.

Table 4: elapsed time of ver hor and ver hor ad, using 8 cores

by the speed up:

S(8) =
336.83 sec

123.83 sec
= 2.72

and by the Gflops performed by the parallel algorithm, as shown in Figure 5.

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

110

cores number

G
flo

p
s

blas3

lev1 parallelism

Figure 5: Gflops of of level1-parallelization algorithm and IBM power6 BLAS 3 performance, versus the core
number.

Let us analyze the performance of the parallel approach obtained by introducing (levels 1 and
2)-parallelism on 3 processors (each one using 8 cores) ††.
Table 5 shows the execution time of ver hor and ver hor ad by introducing (levels 1 and 2)-
parallelism.

using 2 cores.
††as explained in the previous section the three quantities: free surface elevation, temperature and salinity are cal-

culated with independent operations, therefore we use an asynchronous parallelism distributing these three different
data at three different 3 nodes.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar 103

Time sequential algorithm with (level1+level2)-parallelism
elapsed time 336.83 sec. 56.31 sec.

Table 5: execution time of ver hor and ver hor ad before and after (level1+level 2)-parallelization

In this case, the speed up is:

S(24) =
336.83sec

56.31sec
= 5.98

As before, by taking into account this performance metric, such gain should seem quite low if it is
compared to 24 cores, anyway, this result is justified by the limited amount of available parallelism
of such application code.
Let us introduce the so-called relative speed up, defined as:
Definition : Let

S′ =
Sp2

Sp1

=

T1

Tp1

T1

Tp2

, p2 ≥ p1 ≥ 1

where Ti denotes the execution time of the algorithm running on i = 1, 2, ... processors. We call S′

the relative speed up, i.e. the speed up on p1 processors is divided by the speed up on p2 processors.

The relative speed up is equals to the usual speed up when p1 = 1. Moreover the ideal relative
speed up is

S′
ideal =

p2

p1

The relative speed up can be used for measuring the performance gain when the reference value
is not the execution time of the sequential algorithm (p2 > 1). Now, if we compute the relative
speed up using p2 = 24 and p1 = 8 we get:

S(24)

S(8)
= 2.256

i.e. the parallel algorithm on 24 = 3 · 8 cores is scaling quite linearly from first (p1 = 8) to second
(p2 = 3 · 8) level of parallelism.
Figure 6 shows the execution time of OceanVAR software compared to that of the parallel version.
We note that in this case by looking at the reduction of the total execution time we get a perfor-
mance gain of about 60%, and this is in agreement with the improvement of the relative speedup S′.

6 Conclusions

This work describes computation efforts towards the development of a parallel software implement-
ing the 3D-VAR/4D-VAR data assimilation. We start from analyzing the OceanVAR software, in
terms of its condition number and describe the benefits obtained from using the Cholesky factor-
ization, observing that the Truncated SVD provides better results. Moreover, we introduce the
co-design of OceanVAR software, identifying the routines that have the greatest computational
cost and introducing a prototype form of parallelism on two levels. In addition, including calls to
scientific libraries for performing the most expensive computations enabled us to improve the ac-
curacy and to make faster the code migration on different computing platforms. The performance

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

104 L. D’Amore, R. Arcucci, L. Marcellino and A. Murli

Figure 6: Execution time of OceanVar

gain obtained was shown by experimental results performed on IBM Power6 supercomputer, lo-
cated in the laboratories of the CMCC - Ecotekne (Lecce).

This work follows the methodology that starts from the analysis of the available software,
identifies the bottlenecks and introduces their solution on a real code employed in a production
context. Of course it is a first step to develop a fully parallel software, and already the results have
shown us the benefits that we can get. Those benefits suggest us to keep follow this path trying
to get better results.
Software challenges are the employments of hierarchical algorithms to deal with bandwidth across
the memory hierarchy, strategies to mitigate high memory latencies and the need for automated
fault tolerance, performance analysis and verification.

References

[1] Blas - Blacs User Manual - Netlib http://www.netlib.org/blas - blacs.

[2] P. D’Ambra, D’Amore L. , A. Murli , Parallel Computation and Problem Solving Methodolo-
gies: A view from some Experiences, in Recent Trends in Numerical Analysis, in Advances in
Computation: Theory and Practice, Nova Science Publisher, 2000. pp. 249-268.

[3] L. D’Amore, R. Arcucci, L.Marcellino and A. Murli, A Parallel Three-dimensional Variational
Data Assimilation Scheme, Numerical Analysis and Applied Mathematics ICNAAM 2011 -
AIP Conf. Proc. 1389, 1829-1831 (2011) American Institute of Physics.

[4] S.Dobricic, N.Pinardi, An oceanographic three-dimensional variational data assimilation
scheme, 2008 Elsevier.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

HPC computation issues of the incremental 3D variational data assimilation scheme in OceanVar 105

[5] S. Dobricic, N. Pinardi, M. Adani, A. Bonazzi, C. Fratianni and M. Tonani, Mediterranean
Forecasting System: An improved assimilation scheme for sea-level anomaly and its validation,
16 January 2006

[6] R.M. Gray, Toeplitz and Circulant matrices: A Review, Foundations and Trendsr on Commu-
nications and Information Theory, 2, no.3, 2006, pp.155 239.

[7] Groetsch C.W., The theory of Tikhonov regularization for Fredholm equations of the first kind,
Pitman Advanced Publishing Program

[8] GLOBAL OCEAN DATA ASSIMILATION: PROSPECTS & STRATEGIES, USGODAE
Workshop, April 23-25, 2001 University of Maryland.

[9] S. A. Haben, A. S. Lawless and N. K. Nichols, Conditioning of the 3DVAR Data Assimilation
Problem, Department of Mathematics University of Reading, September 2009

[10] C.Hansen, Rank-Deficient and Discrete Ill-Posed Problems, numerical aspects of linear inver-
sion, SIAM, 1998

[11] E.Kalnay, Atmospheric modeling, data assimilation and predictability, 2003 Cambridge

[12] E.Kalnay, C.M.Danforth, Using Singular Value Decomposition to Parameterize State-
Dependent Model Errors, May 11, 2007

[13] Lapack - Linpack User Manual - Netlib http://www.netlib.org/lapack - linpack.

[14] E.Lorenz Empirical Orthogonal Functions and Statistical Weather Prediction, december 1956,
scientific report No.1, Statistical Forecasting Project.

[15] D. McLaughlin, A. O’Neill, J. Derber, M. Kamachi, Opportunities for enhanced collaboration
within the data assimilation community, Q. J. R. Meteorol. Soc., 2005, 131, pp. 3683-3693

[16] A. Murli et al., Some Perspective on High-Performance Mathematical Software, in ”High Per-
formance Algorithms and Software in Nonlinear Optimization”, Kluwer Academic Publishers,
pp. 1-23, 1998.

[17] J. M. Navon, Data Assimilation for Numerical Weather Prediction: A Review, in ”Data
Assimilation for Atmospheric, Oceanic and Hydrologyc Applications. Springer-Verlag Berlin,
2009.

[18] N.K.Nichols, S.A.Haben, A.S.Lawless, Conditioning and preconditioning of the variational
data assimilation problem, preprint MPS 2010 16, school of mathematics and metereology
and physics, University of Reading.

[19] N. K. Nichols, Matematical Concepts of Data Assimilation, W. Lahoz et al eds. Data Assim-
ilation, Springer-Verlag (Berlin), 2010.

[20] J. Nocedal R.H. Byrd, P. Lu and C. Zhu, L-BFGS-B: Fortran Subroutines for Large-Scale
Bound-Constrained Optimization, ACM Transactions on Mathematical Software, Vol. 23, No.
4, December 1997, Pages 550-560.

[21] A. Rodrigues, S. Dosanjh, S. Hemmert, Co-design for High Performance Computing, AIP
Conf. Proc. 1281, 1309 (2010).

[22] E. Agullo, B. Hadri, H. Ltaief and J. Dongarra, Comparative Study of One-Sided Factorizations
with Multiple Software Packages on Multi-Core Hardware, LAPACKWorking Note #217.

c© 2012 European Society of Computational Methods in Sciences, Engineering and Technology (ESCMSET)

