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Abstract: At the University of Maryland, we have experimented over the last 16 years
with the use of several problem-solving environments (PSEs) to enhance the teaching and
enrich the syllabus of the sophomore-level basic differential equations course for science
and engineering majors. We have developed educational materials for teaching this course
in all of the “big three” PSEs: MATLAB (sometimes with Simulink also), Maple, and
Mathematica, in formats varying from small computer labs to large lecture courses. In
this paper we provide a brief history of our project and then discuss both the curricular
and non-curricular issues that arose—some of which resulted in substantial improvements
to the course materials we developed and some of which impeded the deployment of those
materials. We also reveal what we have learned about realistic goals for a course at this
level, in terms of the software and the mathematics, as well as for the faculty and the
students. Finally we give some assessment of the relative advantages and disadvantages of
the three PSEs for a sophomore-level differential equations course.
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1 A Brief History of the SCHOL Project

Our department had for a very long time offered a traditional ordinary differential equations (ODE)
course, MATH 246, for sophomore science, math, and engineering majors. We had based our course
on the text by Boyce and DiPrima (earlier editions of [2]) for nearly 30 years. The topics covered
were standard for its period: the majority of the time was spent on presenting methods for the
calculation of what can conveniently be called “formula solutions” or “symbolic solutions” for first
order linear equations, separable equations, exact equations, homogeneous equations, and second
order linear equations with constant coefficients. In addition we covered Laplace transforms and
series solutions. Numerical methods were covered near the end of the semester, if at all, but there
was very little computer calculation. The course was a traditional pencil-and-paper course.

In the Spring of 1992 two of us (Ron Lipsman and John Osborn) taught two sections of MATH
246 using Mathematica. During that semester we produced approximately 55 pages of notes, briefly
introducing Mathematica, and then discussing numerical methods using Mathematica, qualitative
techniques, and graphics. Following that semester Lipsman and Osborn were joined by three
other colleagues: Kevin Coombes, Brian Hunt, and Garrett Stuck. The five of us began teaching
Mathematica-based sections of our course, expanded and polished the notes, and began urging
our department to adopt the pedagogical approach we were using. The project eventually came
to be called the SCHOL project, SCHOL being an acronym based on the first letters of the last
names of these five persons. Our notes eventually became the book, “Differential Equations with
Mathematica,” published by John Wiley & Sons, Inc., in 1995 [3]. A second edition [4] was
published in 1998. Responding to student demand, we also produced a Mathematica Primer [15].
We also tried adapting our materials to Maple, and in 1996 we published a Maple version of the
book [5], with a second edition [6] appearing in 1997. (The appearance of a third edition [7]
is imminent.) Our engineering college was basically supportive of our approach, but preferred
MATLAB as a platform. Because of this interest, we published a MATLAB version of our book
in 2000 [8], as well as a MATLAB Guide [13]. Second editions of these [9, 14] were published in
2005 and 2006, respectively. The Mathematica, Maple, and MATLAB versions of our books are as
similar as is reasonably possible. They are intended to be supplements, to be used in connection
with a full text. They can be used with most any ODE text; we have always used them together
with the text by Boyce and DiPrima.

The SCHOL curriculum has been the “law of the land” since the late 90s. Since that time all
sections of our MATH 246 have been taught with MATLAB, Mathematica, or Maple. After some
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experimentation, the curriculum of our course stabilized. We developed a specific way of using the
PSE, encapsulated in our books, which we now summarize:

e Introduce students to the symbolic, numerical, and graphical capabilities of the PSE and
coax them to learn—on their own or with the help of a primer or guide—how to do the
calculations and graphics that naturally arise in high school algebra and calculus.

e Introduce the use of PSE symbolics for solving simple differential equations (to begin with,
first order linear equations, then separable, exact, and homogeneous nonlinear equations).

e Introduce a state-of-the-art ODE numerical solver (ode45 in MATLAB, dsolve in Maple,
and NDSolve in Mathematica) very early in the course; in connection with this solver we
explain:

Why a numerical solver is needed;

Several numerical methods (Euler, Improved Euler, Runge-Kutta);

The idea of a variable step size, adaptive ODE solver;

— Error control and reliability.

e The numerical solver is then used in each subsequent portion of the course—including those
dealing with second order linear equations and nonlinear first order systems. Combining
the numerical solver and graphics capability permits the plotting of phase diagrams for first
order nonlinear systems.

e The symbolic capability also fosters an effective, streamlined treatment of Laplace transforms
and their application to the solution of initial value problems for second order linear equations,
including those with a forcing term that is discontinuous or involves the impulse (Dirac)
function.

e The symbolic, numerical, and graphical capability of the PSE permits the treatment of certain
ODE topics (stability, qualitative results) that are often ignored and the inclusion of more
realistic applied problems.

A few years after the SCHOL project got underway, some of us decided to try to extend the same
principles to other sophomore-level courses taken by science and engineering majors, in particular
to MATH 241 (multivariable calculus) and MATH 240 (linear algebra). The three courses MATH
240, 241, and 246 serve as a “sophomore gateway” and a bridge between freshman calculus and
upper-level mathematics courses. We eventually came to the conclusion that if all of these courses
were taught with the aid of mathematical software, with use made of symbolic calculation and
numerical and graphical methods, then students would become familiar with these methods early
in their undergraduate careers and students and instructors could use them freely in upper-level
courses. This principle of the “sophomore gateway” was eventually adopted by the department,
though not without some controversy (described in more detail in Section 3 below).

Jonathan Rosenberg joined our project in 1996, and was involved with various coauthors in
producing material for our several variables calculus course [12] and the MATLAB Guide [13, 14].
He was an author on the second edition of our ODEs with MATLAB book [9], together with Hunt,
Lipsman, and Osborn. Coombes and Stuck eventually left academic mathematics, and have not
been closely associated with the SCHOL project for about 8 years, but the rest of us have continued
to be involved on a regular basis.

Let us end this section with a brief summary of the benefits we believe the SCHOL project has
brought to our department. These include:
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e A thorough modernization of our traditional ODE course, through the introduction of the
symbolic, numerical, and graphical capability of the PSE, and a state-of-the art numerical
solver. Indeed, the course serves as an elementary introduction to scientific computation—
involving science (modeling), ODE topics, and computation.

e The development of a sophomore gateway, which provides a bridge between freshman calculus
and upper-level mathematics courses.

e The computerization of our faculty. Over 50 of our 65 faculty have taught the course at least
once. This experience has produced the important ancillary result of encouraging faculty to
develop their computer skills. This was especially important for faculty who previously had
very little experience with computers.

2 Curricular Issues: Successes and Challenges

2.1 Balance Between Symbolic and Numerical Calculation

For most of the 20th century, introductory courses in differential equations had a set and pre-
dictable curriculum. It consisted mostly of a survey of methods for finding pencil-and-paper
symbolic solutions for a small class of ODEs—primarily separable and linear first-order equations
in one dimension, second-order linear equations with constant coefficients, and first-order linear
systems with constant coeflicients in higher dimensions. Symbolic methods consisted of: deriving
the formula for the solution of first-order linear ODEs, variation of parameters and the method
of undetermined coefficients for second-order inhomogeneous equations with constant coefficients;
finding eigenvalues and eigenvectors by hand for 2 x 2 matrices as a way of solving two-dimensional
linear systems with constant coefficients; and using Laplace transforms for solving initial-value
problems for linear equations with constant coeflicients and possibly discontinuous forcing term.
Discussion of other classes of equations was mostly limited to standard topics: for example, the
statement of the existence-uniqueness theorem and series solutions of second-order equations with
analytic coefficients, possibly including the theory of regular singularities and Bessel and hyperge-
ometric functions. Discussion of numerical methods mostly consisted of an explanation of Euler’s
method, possibly its convergence, and why the Runge-Kutta method is usually much more efficient.
Sometimes a few simple examples were worked out with the aid of a calculator.

About 10 years before we began the SCHOL project, it was finally apparent that this cur-
riculum was out of date, but no replacement curriculum had yet become standard; in fact, at
most universities, the traditional course was still being taught almost the same way it had been
presented for 30 years or more. We were thus faced with a choice of what material to cover.

First among these curricular issues was the question of the appropriate role for numerical
methods. A second issue was whether to use standard general-purpose software, or packages
designed specifically for the course. While others have answered this question differently, our
guiding philosophy was that we should teach students how to make effective use of one of the
popular off-the-shelf software packages (MATLAB, Simulink, Maple, and Mathematica), and not
to use proprietary or custom-designed packages (see Subsection 2.2 for more on our reasoning),
nor to concentrate on theory rather than implementation.?

Spending a certain amount of time getting students comfortable with a PSE and numerical
methods necessarily means reducing some time spent on pencil-and-paper symbolic calculation.
Our philosophy was to preserve some emphasis on symbolic solutions of equations, but to use
the symbolic capabilities of the PSE to “let the computer do the dirty work.” We thus retained

3The latter might be appropriate in numerical analysis courses, but not in an elementary differential equations
course taken primarily by engineering and science students.

© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



The SCHOL project at the University of Maryland 85

substantial discussion of symbolic solutions, but to some extent allowed students to discover these
by means of the PSE. (This is a bit easier in Maple and Mathematica than in MATLAB. In our
MATLAB-based courses, we always make use of the Symbolic Math Toolbox, which farms out
symbolic calculations to a copy of the Maple kernel.)

One curricular issue, which still has not been completely sorted out, is whether in this day and
age it still pays to spend any time on pencil-and-paper calculations of symbolic solutions. This
issue is closely linked to the matter of testing, which will be discussed below in Section 2.6.

In any event, one could certainly argue that, with the advent of reliable PSEs, any discussion
of specific symbolic methods is obsolete. In practice in our own classes, we have retained the
discussion of Laplace transforms and eliminated most discussion of series solutions. We recognize
that others might make a different choice. Part of the argument for retaining a discussion of
Laplace transforms is that engineers sometimes think in terms of the transform variable s, even if
they no longer rely primarily on pencil-and-paper calculations of transforms. Indeed the Simulink
user encounters Laplace transforms in disguise whenever he sees the icons for many of the standard
Simulink blocks, such as the Integrator (Figure 1) or Zero-Pole transfer function (Figure 2).

1
1 = P
5

Figure 1: Icon for the Integrator block in Simulink

(=1)
s+ 1)

Figure 2: Icon for the Zero-Pole block in Simulink

2.2 How Much Programming to Cover

As indicated above, an ancillary issue that came up was how much programming to cover in the
ODE course. Several different models are possible, and others who have produced materials for
undergraduate ODE courses have made different choices. At one extreme, one could start with a
discussion of various algorithms and have students program them from scratch. This strikes us as
a case of “reinventing the wheel,” and while it might be an interesting exercise in a programming
class, it is rather pointless in a course designed to teach science and engineering students about
differential equations. Furthermore, we felt it was our job to teach and test mathematics, not
programming, so that extensive programming was tangential to the purpose of the course we were
teaching. At the opposite extreme (taken by, e.g., [1], [10], and [11]), one can produce a number
of custom-designed routines tailored specifically for the ODE course, and let the students work
mostly with these. One also has a choice between approaches based on graphical user interfaces
(GUIs), e.g., Simulink and certain of the custom packages, and approaches based on traditional
programiming.

Without taking a stand on the GUIs vs. programming issue, our view has been that since most
of our students will go off to a wide variety of industrial, government, and academic environments,
one should prepare them for what they will encounter there, and teach them how to use (at least)
one of the standard mathematical software packages in general use, i.e., the “big four”: MATLAB,
Simulink, Mathematica, and Maple. While custom packages might be useful in special situations,
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they tend to insulate the student from familiarity with the general-purpose ODE routines they
will encounter in the workplace, and thus our view has been that it is better to let the students
become familiar with the standard ODE solvers, namely ode45 in MATLAB (used by default in
Simulink also), dsolve in Maple (also used in the MATLAB Symbolic Math toolbox), or DSolve
and NDSolve in Mathematica. We have also found that once students become familiar with one
of the standard PSEs, it is not hard for them to make the transition to one of the others, whereas
this transition is harder for those trained only on custom-designed packages.

2.3 New Innovations in the ODE Curriculum

In this subsection we discuss in a bit more detail some of the curricular innovations made possible
by our new mode of teaching sophomore differential equations:

1. the importance of interpretation of solutions,
2. improved discussion of stability and singularities, and

3. an introduction to serious scientific computation (a combination of mathematics, science,
and computing) at the sophomore level.

Item (1) is a feature of our curriculum on which we have placed a great deal of emphasis.
Indeed, the most common mistake made by beginning students is to take everything produced by
the computer at face value, without attempting to understand what it means or what limitations
there might be to the calculation. In fact, as you will see in Subsections 2.4 and 2.6 below, we
spent as much time asking students “what does this calculation tell us” as we did saying “have the
computer do the following calculation.”

Item (2), improved discussion of stability and singularities, is a significant curricular advance.
Here the motto “a picture is worth a thousand words” really holds true; the concept of stability is
instantly brought out by a picture such as [9, Figure 7.3] or Figure 4 below (where stability affects
the accuracy of the Euler method), whereas explaining this concept without the computer always
proved difficult in the past. We have also found the use of a computer-based PSE quite useful for
explaining various notions of singularities: blow-up of solutions of some nonlinear ODEs in finite
time, which can be seen quite dramatically from computer calculations (see, for example, sample
exam problem #1 in Subsection 2.6 below), and the difference between regular and nonregular
singular points for linear ODEs (see, for example, Problem E7 in [9]).

Finally, let us comment on item (3), introduction to serious scientific computation at the
undergraduate level. By this we mean a blend of the following ingredients: mathematical modeling
of a scientific problem through a differential equation or system of equations, numerical work,
analysis of the solutions, refinement of the model, and eventual conclusions about the original
scientific problem. This combination of steps is of course a large part of the work of computationally
oriented scientists and engineers, but has in the past been hard to introduce at the undergraduate
level because of lack of coordination between mathematics and science/engineering classes and
because the traditional mathematical curriculum at this level did not include analysis of any
scientifically realistic examples. Our materials now make this feasible. One appealing example that
can be treated easily with any of the major PSEs is the nonlinear damped pendulum, governed by
the equation

0" (t) + ab'(t) + w?sin O(t) = 0. (1)
Students can now approach this by starting with the linear undamped pendulum equation 6" (¢) +
w?0(t) = 0 (always studied in the “traditional” ODE course) and observing the effect of first
building in the nonlinearity and then studying the effect of adding in the air resistance term af’(t).
It is always thrilling for students to be able to arrive at a phase portrait such as the one in Figure
3, to learn how to calculate the position of the separatrices, etc.
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phase portrait for the nonlinear damped pendulum

Figure 3: Phase plot for the nonlinear pendulum 6" + 0.056'(¢) +sin = 0, computed in MATLAB
using ode4b

2.4 Project Assignments

Computing has to be learned by doing, not just by watching. Thus we have found that the key to
effective use of the computer in an undergraduate differential equations course is a good selection
of problem and project assignments. We and our colleagues have basically tried two approaches
to such assignments: frequently assigning a small number of short problems on a regular basis—
say, once a week, or assigning a few longer projects during the course. Both methods can work
effectively, and which is preferred might depend on availability of computer labs and grading
support. With either approach, we found it advantageous to encourage students to work on the
assignments in small teams.

We give here three examples of actual problem assignments of the longer “project” sort that
we have given in our courses. Our books [4], [7], and [9] give many more examples of both short
and long problems. The shortest and most routine problems are not especially inventive—they
basically amount to saying “solve this equation with your PSE’s ODE solver.” However, the longer
problems, such as the three given below, involve one or more of the important issues discussed in
Subsection 2.3 above. The first one of the following problems uses Mathematica (though it could
just as well have used Maple or even the Symbolic Math Toolbox in MATLAB) for studying series
solutions. The second is taken from [9, Problem C3], but could be done with the numerical ODE
solver of any of the PSEs. The third uses Simulink for studying the forced nonlinear pendulum.

1. One point not made in all texts but sometimes useful is that there are non-linear differential
equations that can be solved by series methods. Consider for example the equation

y'(2) = y(2)* +z, (2)

an equation that cannot be solved in terms of elementary functions. Consider this equation
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with the initial condition y(0) = 0, and let’s look for a solution of the form
y@) = ait. 3)
i=1

(We know there is no constant term in the Taylor series for y around z = 0, because of
the initial condition.) Substitute (3) into (2) and expand the right-hand side. This gives a
series of simultaneous quadratic equations for the coefficients a; which become increasingly
complicated as i — oco. However, we can solve inductively for the coefficients, by first equating
the terms in z, then the terms in 2, etc.
Z2
4 7.
Thus the series for y? begins with Z- and so (using (2)) the series for y’ begins with

(a) Show (by hand calculation) that the first non-zero term of the series for y must be

4
y'(x)=$+%+"'-

Integrating (and recalling that y(0) = 0), we see that the series for y(x) begins with

z? 2

y(x):7+%+~-~.

(b) Mathematica is able to multiply, differentiate, and integrate polynomials. Assuming
that

{,132 5

y(z) = 5 + ;3—0 + agz® + arz” + agz® + agx® + a0z’ + apxtt + -, (4)
have Mathematica compute the right-hand-side of (2) and integrate it (take the definite
integral starting at 0 so you don’t pick up a constant term). (Note: Mathematica can’t
handle the “ -7 so just pretend y is an 11-th degree polynomial.) Then equate coeffi-
cients with the expression (4) and so compute the values of the coefficients ag, . .., a11
that solve the equation up to terms of degree 11. Can you see a pattern?

(c¢) Plot the 11-th degree Taylor approximation for y on the same axes with a numerical
solution of (2) obtained using NDSolve on the interval —1 < < 1. Which method is
better for small values of x? Larger values of ? Note: For 0 < z < 1, y(z) > x—;, as

you can see for example from the series. Thus y(1) > .5. But for 2 > 1, the right-hand

side of (2) is > y(x)? + 1, so the solution grows faster than the solution of 3’ = y? + 1,

which is of the form y(z) = tan(z + C'). Since the tangent function blows up when its

argument reaches 7, this analysis shows that the solution of (2) must become infinite
somewhere between z = 1 and = = 2.2. Roughly where does the blow-up occur? Is

there any way of seeing this from the series solution (4)?
2. We shall study solutions y = ¢ (¢) to the initial value problem
y=-1-y’), y0)=b (5)
for nonnegative values of t.

(a) Plot numerical solutions ¢;(t) for several values of b. Include values of b that are less
than or equal to 0, between 0 and 1, equal to 1, and greater than 1.
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(b) Now, based on these plots, describe the behavior of the solution curves ¢y (t) for positive
t, when b < 0,0 <b < 1,b=1, and b > 1. Identify limiting behavior and indicate where
the solutions are increasing or decreasing.

(¢) Next, combine your plots with a plot of the line y = ¢. The graph should suggest that
the solution curves for b > 1 are asymptotic to this line. Explain from the differential
equation why that is plausible. (Hint: Use the differential equation (5) to consider the
sign of ¥’ on and close to the line y = t.)

(d) Finally, superimpose a plot of the direction field of the differential equation (5) to
confirm your analysis.

3. In this problem, we’ll look at the effect of a periodic external force on the pendulum, using
the model
0" + 0.050" + sin 6 = 0.3 cos wt. (6)

Prepare Simulink models for (6) and its linear approximation
0" +0.050" + 0 = 0.3 cos wt.

The right-hand side can be produced by a Sine Wave block (which is in the Sources Library).
When you install this block and left-click on it to bring up the Block Parameters menu, you
will see an Amplitude box in which to insert the parameter 0.3 and a Frequency box in which
to insert the parameter w. Note that since we have a cosine, not a sine, you also have to
adjust the Phase (to 7, since coswt = sin(wt 4 §)).

(a) Plot the numerical solution of this differential equation with initial conditions 6(0) = 0,
6'(0) = 0, from t = 0 to ¢ = 60.

(b) Do the same for the linear approximation.

(You can send the plots to the printer from a Scope display using the “printer” icon in the
upper-left corner, or else can use the simplot utility.)

Compare the nonlinear and linear models for the following values of the frequency w: 0.6, 0.8,
1, 1.2. Which frequency moves the pendulum farthest away from its equilibrium position?
For which frequencies do the linear and nonlinear equations have widely different behaviors?
Which forcing frequency seems to induce resonance-type behavior in the pendulum? Graph
that solution on a longer interval and decide whether the amplitude goes to infinity.

2.5 How to Use the Computer in the Classroom

Updating the undergraduate differential equations course requires not just changing the assign-
ments given to the students, but also changing what is done in the classroom. Again, many different
ways of proceeding are possible, and the choice in any given course will probably depend on certain
additional factors (c¢f. Subsection 3.4), such as how large the class is, whether or not students can
be expected to bring laptops to class, and availability of computer labs or video projectors (for
the instructor to project a computer demonstration in front of the class). We have experimented
with many different modes of operation. Our feeling is that if projection equipment is available,
it is highly preferable for the instructor to do “live” demonstrations in front of the class. This
makes the teaching more spontaneous (will the software really be able to handle this particular
problem?) and gives the students the feeling that they can easily do the same thing. Of course,
we have found that some of our colleagues are somewhat reluctant to try such demonstrations (see
Subsection 3.2), either because it requires extra preparation, or for fear of showing the students
that they, too, make silly errors and need to debug their code.
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When live demonstrations are not feasible, a weaker but still useful alternative is to prepare
transparencies of computer sessions (with graphical output) in advance, and to project these on
a screen with an overhead projector. This at least makes it possible to point out to the students
how to work certain demonstration problems.

2.6 Testing

One of the first basic principles that new teachers learn is that if something isn’t on the test,
students won’t bother learning it. Thus one of the key issues in incorporating technology into an
ODE course is figuring out how the technological part of the curriculum will be tested. We and
our colleagues have basically tried three different approaches:

1. continuing to give old-fashioned pencil-and-paper exams that ignore the new parts of the
curriculum,;

2. giving pencil-and-paper exams that test interpretation of computer output, but not coding;
or

3. giving on-line exams in a computer lab.

To be honest, approach (1) is the most popular choice among too many of our colleagues, but it has
the predictable effect that most students pay relatively little attention at the end of the semester
to the use of technology, and only concentrate on it when computer projects are due (assuming
that these projects count for a significant fraction of the grade).

Approach (3) requires the use of a teaching theater or similarly computer-equipped classroom.
It also requires rather complicated security measures to prevent students from communicating by
email or IM during the exam, but still we have been successful in deploying this method on a
limited basis. Here is the procedure. The exam is given in a room equipped with computers where
each student can log in only to a limited environment running, say, Mathematica or MATLAB. In
the case of a Mathematica exam, an exam notebook loads automatically. Each student saves this
notebook under a name like examl-student17.nb. The instructions say: “All questions must be
answered in the Notebook. When answering the questions, make all your comments in text cells.
Any input and output you create should appear in the corresponding type of cell. Please delete
any extraneous and incorrect cells. Anything that appears will be graded! You should start by
executing the following lines, which load packages and define commands that might prove useful
during the exam.” At the end of the exam, all the notebooks are saved on a server that the
instructor, but not the students, can access. Grading and comments are inserted into the exam
notebooks by the instructor, and then the notebooks are returned to the students. The same
procedure could be followed with Maple worksheets/documents or with MATLAB publishable
M-files.

The option we have generally settled on is (2), giving pencil-and-paper exams that test inter-
pretation of computer output, but not coding. We have felt that since we are testing mathematics
and not programming ability, asking students to program a particular calculation is a diversion
from the main purpose of the course, and furthermore, is somewhat unfair since the students in
this mode of test-taking do not have a computer in front of them and have no way to debug any
syntax errors. On the other hand, basing the questions on computer output makes it possible
to test aspects of the subject that were impossible before. Here are a few actual exam problems
that we have given recently at the University of Maryland in the sophomore differential equations
course, using MATLAB.

1. (a) Find the solution of the initial value problem

dy _

-t —1.
Y , y(0)
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What is the largest interval on which the solution is defined?

(b) What follows is a short M-file that attempts to solve the above equation numerically
using MATLAB with different values of the error tolerance, along with the output it
generated:

t = [0:0.2:0.8, .98];

for j = 1:3
options = odeset(’RelTol’, 3%107(-j));
sol = ode45(@(t,y) -t/y, [0,1], 1, options);
y = deval(sol, t);

disp(’ t y?), disp([t’, y’1)
end
t y
0 1.0000
0.2000 0.9798
0.4000 0.9165
0.6000 0.8000
0.8000 0.6000
0.9800 0.2560
t y
0 1.0000
0.2000 0.9798
0.4000 0.9165
0.6000 0.8000
0.8000 0.6000
0.9800 0.1989
t y
0 1.0000
0.2000 0.9798
0.4000 0.9165
0.6000 0.8000
0.8000 0.6000
0.9800 0.2004

How do you account for the fact that with all three error tolerances, the computed value
of the solution at t = 0, 0.2, 0.4, 0.6 and 0.8 is the same, whereas the computed values
of the solution at t = 0.98 differ wildly? Which of the three approximate solutions is
most accurate, and why?

2. Suppose the initial value problems

Yy =2y+e ", y0)=-1/3

y =-2y—e’ y(0)=1/3
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Dy = 2*y-2+3*exp(-x)

T
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Figure 4: Approximate solution using Euler method with h = 0.2,0.1,0.05 and ode45

are solved with ode45 on [0, 10]. For which problem would you have greater confidence
in the results? Explain.

. Consider the initial value problem

dy
29y 243" 0) = 0.
Iy =2y 243 y(0)

Figure 4 shows approximations to y(z) obtained with the Euler method with step size h = 0.2
(top curve), h = 0.1 (second curve), h = 0.05 (third curve), and with the MATLAB function
ode45 (curve with the circles).

(a) Explain the graph in terms of stability of the ODE.

(b) Solve the equation explicitly.

. The following MATLAB session studies the system

z—x:xzf%:yf?,
i : ™
%:Sxy+y .

>> syms Xy

>> eqs = [x72 - 2*x*y - 2, 3*xxy + y~2];
>> [xcrit, ycrit] = solve(eqs(1l), eqs(2));
>> double([xcrit, ycrit])

ans =
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1.4142 0
-1.4142 0
0.5345 -1.6036
-0.5345 1.6036

>> A = jacobian(egs, [x,y1);
>> for j = 1:4
double(eig(subs(A, [x,y], [xcrit(j), yecrit(j)1)))
end

2.8284
4.2426

-4.2426
-2.8284

5.0492
-2.3766

2.3766
-5.0492

>> [xx, yy] = meshgrid(-2:.5:2, -2:.5:2);

>> quiver(xx, yy, XX. 2 - 2%xX.*yy — 2, 3*XX.*yy + yy. 2)
>> set(gca, ’XTick’, -3:3, ’YTick’, -3:3)

>> axis equal tight

The figure is shown in Figure 5. Use the MATLAB output and/or your own calculations to
answer the following questions:
(a) What are the critical points of (7)? Classify each one as to type and stability.

(b) Predict the behavior (as t increases) of the solution of (7) with initial condition z(0) =
—1, y(0) = —1. What will happen to this solution as ¢ — co? Sketch your predicted
solution in the phase plane.

(¢) Predict the behavior (as ¢ increases) of the solution of (7) with initial condition x(0) = 1,
y(0) = 1. What will happen to this solution as t — 0o? Sketch your predicted solution
in the phase plane.

And here are two exam problems using Maple (dating from 1994, but updated for Maple 11):
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Figure 5: Output from the MATLAB session

. The Maple figure in Figure 6 depicts the direction field of a first order autonomous differential

equation y' = f(y).
(a) Indicate the equilibrium solutions of the differential equation and discuss their stability.
(b) Which of the following expressions could be f(y)? More explicitly, explain why each
candidate could or could not serve as f(y).
Lyly—1(y-2)
iy (y — 1)y —2)
iii. —y2(y —2)2

) - —
) e —— ]
) o ——

y(t) 1A// ~ ‘/// ‘// ~ s
SSS S S S S S S S S S S S S S S S S S
SSSSS S SS S S S S S S S S S S S S

[ 1] ]
FLrrrrrrrerrrrrri
L P PPl

: : : : :
0.0 02 04 06 08 10
t

Figure 6: A direction field plotted in Maple

© 2008 European Society of Computational Methods in Sciences and Engineering (ESCMSE)



The SCHOL project at the University of Maryland 95

6. State the Sturm Comparison Theorem. (Hint: It concerns two differential equations y” +

q(z)y = 0 and y” + r(z)y = 0 on an interval [a,b].) Now examine the following Maple
Worksheet and answer these questions:

(a) What is the interval [a, b] under consideration?
(b) Identify the functions ¢(x) and r(x).

(c) What conclusion of the comparison theorem is verified in the graph?

soll = dsolve({diff (y(x),,z) + 72 - y(x) = 0,5(0) = 0, D(y)(0) = 7}, y(x));
y (x) = sin (7 z)

plot({n2%,2- 72 . (1 — exp(—=x))}, = = 0..2);

T T 1
0 0.5 1.0 15 2.0

sol := dsolve({diff(y(x),z,x) + 2-72- (1 — exp(—x)) - y(x) = 0,
y(0) = 1, D(y)(0) = 0}, y(x), numeric, max fun = 1000);

proc (z_rkf45) ... endproc

with(plots) :

biggersol := odeplot(sol, [x,y(x)],1..2) :

smallersol := plot(rhs(soll),x = 1..2, style = POINT, symbol = BOX) :
display({biggersol, smallersol});
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2.7 Comparison of PSEs

Since we have developed materials for all the major PSEs (MATLAB, Mathematica, and Maple),
we should say something about their relative advantages and disadvantages from the point of
view of teaching sophomore ODE. First of all, as we said before, we have found the differences
between these various packages to be relatively minor, compared to the features that they all
share in common. Secondly, we have found that the differences have tended to dissipate with
time. In the early 90s, Mathematica and Maple emphasized their “front ends,” called notebooks
and worksheets, respectively, whereas MATLAB more closely resembled conventional programming
languages such as FORTRAN. That tended to make numerical calculation faster in MATLAB, but
Mathematica and Maple were more convenient for producing finished documents in a single step
(without having to run code, save the output, and paste it into a document). Back in the 90s,
MATLAB was superior for numerical calculation, especially for calculations involving matrices.
While MATLAB is still superior for numerical linear algebra, nowadays these differences no longer
matter much in a beginning ODE course. While efficiency and speed are still relevant issues for
large-scale computations, as desktop and laptop computers have become faster, speed is no longer
much of a consideration in the relatively small calculations likely to arise in a sophomore course.
On the other hand, the “front ends” of all of the major PSEs have been improved to the point
where they all can be used to produce finished documents incorporating descriptive text, code,
numerical or symbolic output, and graphics. And finally, when we started the SCHOL project in
the 90s, there were significant differences between the sorts of problems that could be handled by
each of the major PSEs. (For example, some did not work very well with solutions going backwards
and forwards in time, etc. And there were various strange bugs, which have mostly been fixed since
then, in many of the symbolic ODE solvers, often having to do with choosing the wrong branch of
multivalued transcendental functions.) Most of these differences have since disappeared, so that
the instructor who wants to use our materials in sophomore ODE can now choose among the
PSEs on the basis of non-curricular issues (local campus support, price, licensing agreements, etc.)
without there being much effect on quality of the curriculum.
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3 Non-Curricular Issues

In this section we will describe the non-curricular issues that arose over the years in our project
to incorporate technology into the sophomore level ordinary differential equations course. There
were many such issues. They included:

e support, or lack thereof, of the department administration.
e support and cooperation, or lack thereof, of our fellow faculty.

e receptivity of the students to the introduction into the course of what they perceived, at least
initially, as new material, in addition to the normal course material.

e the choice of requiring computers in the classroom (e.g., mandate laptops or conduct classes
only in computer labs), or expecting that the students’ computer work would take place
outside of class.

e the charge that our new version of the course would require additional time to be devoted to
the course—both by students and faculty; and if true, how can it be justified?

e the choice of class format that would work best with our version of the course—small classes,
large lectures, computer teaching labs, or some other.

e frequent pressure from publishers to update our materials, especially as new versions of the
software emerge.

e additional student costs, e.g., to buy student copies of the software, or to purchase software
primers or course supplements.

e pressure from clients around campus (primarily Engineering) to emphasize certain software
packages at the expense of others.

e the choice of format in which to publish our material: university class notes, supplement to
ODE text (specific or generic), or a full fledged book.

In what follows we discuss each of these issues, describe how we dealt with them, and assess
what success we had in those dealings.

3.1 Support of Departmental Administrators

One of the first critical issues we faced was the support of our departmental administrators, i.e.,
the Chair, Director of Undergraduate Studies, and the Undergraduate Curriculum Committee.
What we were proposing would involve a major change to one of the most stable courses in the
Mathematics Department, one whose curriculum and method of delivery had remained unchanged
for many years. And since we anticipated some resistance on the part of our colleagues and students,
we knew that obtaining the prior enthusiastic support of the department’s leaders in education was
crucial. We were at best only partially successful. The ambivalence that we anticipated among
our colleagues was reflected in departmental discussions of our proposal. Furthermore, perhaps
gauging the political winds, the Chair was supportive, but his support was best described as tepid.

In the end, after painstaking and time-consuming lobbying on our part, the Chair and all the
appropriate departmental committees gave their “qualified” blessing for our project to proceed.
However, they did not commit any additional resources to the teaching of the course. There is no
question that the lack of unreserved support for our efforts had some deleterious effects. For ex-
ample, negative whispers in the halls caused some faculty who might have participated to hesitate.
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Others who did participate, did so with some trepidation. We had to do our own advertising and
promotion in the Engineering College—without the overt backing of the departmental administra-
tion. Students, also sensing some reluctance on the part of the department, felt free to complain
in ways they might not have had they sensed wholesale support. None of these problems was fatal,
and the fact that, 16 years after its inception, our vision for the content and delivery of sophomore
ODE has been implemented and is the “law of the land,” proves that our project was deployed
successfully. But we believe unquestionably that had we had the enthusiastic and unqualified sup-
port of the department from the beginning, including additional resources, our project would have
been deployed more quickly, with wider participation and greater impact than it enjoyed.

3.2 Faculty Support

The issue of faculty support was also crucial for the success of our project. We spent many hours
explaining our motivations and goals to our colleagues. Quite a few understood and sympathized
with our objectives, and these taught the course enthusiastically using our materials as they were
developed. But a not insubstantial number were less enthusiastic. They worried about several
things: the extra time they thought would be required of them; the possible need to eliminate
topics from the established syllabus in order to accommodate the software; their ability to master
the software sufficiently so that they could meaningfully respond to student requests for assistance;
reliance on hardware and software that might prove unreliable (recall this was happening during
a period when the concept of computer-aided course work was still in its infancy); inexperience in
designing test materials suitable for a mathematical software environment. All of these concerns
influenced us as we continued to develop and redevelop our material throughout the 1990s.

In the end we believe that we met these concerns forthrightly and successfully. The faculty
appreciated our responsiveness and eventually the use of mathematical software was made manda-
tory in the sophomore ODE course. The number of faculty—both regular and visiting—who have
taught successfully at Maryland using our materials is truly astounding. Other faculty (and some
of us) developed software materials for other sophomore courses (linear algebra and multi-variable
calculus). Today it is accepted practice by all who teach sophomore math courses at College Park
that software is an integral part of the curriculum. So one of our primary goals (creating the
sophomore software gateway) was achieved. This gives us much satisfaction. But there is one
unfortunate practice that survives from the days of the early skeptics. It manifests itself in per-
haps 10-15% of the faculty who teach the course. Namely, they resent the intrusion of what they
see as at best a tool into the heart of the course and they deal with it according to a method
described best in a phrase coined by one of us: they sniff around the edges. They do not familiarize
themselves with the software more than in a casual sense; they deemphasize it in class; they send
software questions to the TAs; they continue to emphasize classical symbolic solution techniques
over numerical and qualitative methods; in short, they try to recreate the classroom environment
that obtained in 1975. By doing so they shortchange their students, and they shortchange them-
selves. We are grateful that the number of such lecturers is small, but there is no question that
they have had a negative influence on faculty support. This phenomenon might diminish as more
young faculty come on board.

3.3 Student Cooperation

We wondered how our students would react to this major change in a traditional course. The vast
majority were engineering majors—far more than the math or physics majors who took the course.
Would they realize that by exposing them to a mathematical software tool and a heightened numer-
ical and graphical environment, we were enhancing their preparation for the professional challenges
that awaited them; or would they merely see the change as a needless complication of their program
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of study? Well, aside from the not surprising bumps and potholes (i.e., locked computer labs, in-
compatible printers, occasionally confused instructors), we were pleasantly surprised by the speed
and equanimity with which our students acclimated themselves to the new mode. Moreover, as
time went by, the percentage of our students who were exposed to a mathematical software system
before they entered our course grew markedly. And those who were not so exposed a priori were
also not disgruntled about encountering it; indeed the time it took for our (unexposed) students to
“get up to speed” shrunk from year to year. Students never complained that they had to learn less
about series solutions because they and their instructors had to spend time on the software. They
did complain about the glitches—sometimes vociferously. But as we explained earlier, we believe
their complaints might have been less forceful had they not been exposed to the small number of
recalcitrant faculty. In any event, once the gateway was opened, it is fair to say that the students
marched through it with scarcely a stumble.

3.4 The Computer Environment

From the inception of our project we had a very clear idea of how we wanted the introduction of
a mathematical software system to influence the curriculum of the sophomore ODE course. What
was less clear to us was the precise format by which the students would access the software. We
entertained many ideas:

e require that each student come to class equipped with a laptop on which the software was
loaded;

e present the course in a computer lab in which students would access the software on a
university-owned desktop;

e use the preceding scheme, but in a more elaborate venue. The University of Maryland was
one of the national pioneers of teaching theaters—basically computer labs in which all the
student desktops and the faculty desktop are closely networked. The University had two
such theaters in the early 1990s;

e don’t require students to have computer access in class, but insist that the faculty member
have the software available on the lecturer’s desktop with the ability to project its screen to
the students;

e ask the faculty lecturer only occasionally to bring a computer to class for demonstrations
and presentations;

e operate with no computers in class, but ensure that students have access to the software
through student versions for their own computers and, more commonly, well-equipped com-
puter labs around campus.

To be honest we had differing opinions about which mode was most desirable. But in the end,
cost and logistics made the decision for us. Keep in mind that this decision process was taking place
in the early 1990s. To require that all of our students (at a large state university, many of whose
enrollees had financial challenges) should acquire laptops was far beyond the realm of possibility.
The theater option was appealing and we experimented with it, but there were not nearly enough
seats to accommodate the hundreds of students who took the course each semester. There were
more regular computer lab seats, but still not nearly enough. There were also an insufficient
number of classrooms with computer access for the instructor; nor was the university inclined (at
that time) to invest the resources to correct that situation. Also, for reasons already discussed, not
too many faculty were clamoring for such a development. Some of us did do computer demos and
presentations in class, but it really didn’t take us long to realize that the last described mode (the
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computer-less classroom) was the default solution. In the end, that relatively low tech solution
dovetailed rather nicely with a key feature of the course as it evolved. Namely, we replaced many
rote formula solution problems by mini computer-aided projects, as we have already discussed.
The students worked on these projects alone or in groups, in their dorms or in computer labs, and
thus the format selected worked well to implement our vision. Our students took to this format
rather well and many did excellent work. On the other hand, that work resulted in lots of grading
for us—a nice segue to the next topic.

3.5 Additional Time

From the outset we believed that the charge of “extra time” was a red herring. We saw—and
continue to see—that the responsibility of our department is to provide our students with the most
modern, relevant and useful education in mathematics—one that they could use successfully in
academia, a federal research lab, or in the business world. If a topic in physics or chemistry evolves
to the point that the lab component of an allied course must be radically altered or augmented,
no one questions the suitability of revising the curriculum. If extra time is mandated, the faculty
carefully examine the curriculum and decide what current material, if any, must be replaced. If the
nature of the change might necessitate increased time in the lab by faculty and/or students, that is
viewed as the price of modernization. Well, exactly the same principles apply to mathematics. An
integrated curriculum incorporating symbolic, graphical, numeric and computational techniques
is the right way to teach 21st century ODE—even to sophomores. If we don’t implement such a
curriculum, we are shirking our responsibility. If additional time or effort is required of faculty
and/or students, it is unavoidable—and by the way, likely only temporary. Our impression is that
this self-evident assertion was recognized more quickly by the students than by the faculty, but
eventually everyone got it.

3.6 Class Format

At the beginning of the project, especially when we were uncertain of the means of student com-
puter access, we also pondered the best format in which to deliver our course. Traditionally, the
course had been taught in (relatively) small classes (25-35 students) by a professorial faculty mem-
ber. Occasionally a visitor or an exceptionally qualified lecturer might be assigned a section, but
generally the task fell to regular faculty. Because of the huge number of engineering students, there
were semesters in which the number of sections reached ten or more. Naturally—for the reasons
already alluded to—we worried about securing the services of a reasonable number of faculty who,
if not completely dedicated to our vision, would at least be sufficiently qualified and enthusiastic
to deliver the course in the manner we intended. So we considered the classic large lecture format
or more moderately-sized large lectures in computer labs. This would cut the number of faculty
necessary, but of course introduce the problem of qualified TAs. Could we find enough of them?*
But as with the issue of access, the class format decision was made for us by the available facili-
ties. At that time there were insufficient lecture hall facilities to move to a large lecture format.
Thus, we produced some help materials for faculty; we did a lot of hand-holding; and we made
ourselves widely available to our colleagues for their questions. With these compromises and a lot
of encouragement, we were able to develop a large cadre of faculty lecturers who could and did
deliver the course in small classes. This is highly ironic, because in the budget crunch of the early
2000s, the Math Department converted the course to a large lecture format, which required very
few faculty (but a large number of TAs) to run the course effectively. But we are pleased to say
that it is still running very smoothly. So in the end, we concluded that our version of sophomore
ODE should succeed in virtually any class format.

4To be truthful, we were less concerned about finding qualified TAs than we were about finding qualified faculty.
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3.7 Publisher Pressure

We were fortunate at the beginning of our work to find a publisher with a successful ODE textbook
who saw the potential to modernize and enhance the value of their book by adopting our vision
for the ODE course. They encouraged the author to welcome a supplement that they believed
would boost the appeal of their product. The publisher was John Wiley and Sons, Inc., the author
was William Boyce, and the book was Elementary Differential Equations (the latest edition is
[2]). However, from the outset, they wanted us to write editions of our supplement in all three
PSEs—Mathematica, Maple and MATLAB, and to keep our books current with the latest version
of each software package. Thus ensued a constant tension between us. As important as it is that
books keep up with changes in software, because of other constraints on our schedules, we found the
publisher’s demands difficult to meet. Although there were many common features of Mathematica,
Maple and MATLAB, there were also significant differences. It’s a little like Romance languages.
Being fluent in French (Mathematica) guarantees only that one is at best minimally conversant
in Italian (Maple). Moreover the software companies produce new versions too frequently. In
fact we have produced two editions of our materials for each of the three PSEs ([3], [4], [5], [6],
and [8], [9]), and a new edition of the Maple version will be out soon [7]. We appreciate the
publisher’s motivation, but we have found this pressure a burden; although to be honest software
improvements in recent versions of all three products—especially in their interfaces—have greatly
abetted the implementation of our vision for sophomore ODE.

3.8 Student Costs

Naturally, the concern of additional costs to the students was raised as we developed our new
materials. These costs might include:

e the cost of our “book,” which would be in addition to the cost of the primary text;

e the cost of a primer or any other help material students might need to get started using
the software—which, at least at the outset of our project, it was unlikely that they had
encountered previously;

e the cost of purchasing a student version if we made their ownership of the software mandatory;

e possible tutorial costs if they needed additional help in acclimating to the software environ-
ment.

We were very sensitive to these concerns. The costs of books and educational materials that
students cope with were (and continue to be) very burdensome. We did not want to add to their
financial woes. And so in planning and deployment we addressed each of the four issues above.
We wrote a paperback supplement rather than a full blown textbook—more on that choice later.
We incorporated enough material on the software in the supplement to enable students to get
up to speed without the need for an additional primer. We arranged for a campus software site
license and widespread availability of the software in departmental and campus computer labs. We
convinced the Math Department to partner with the campus computer services organization to
plan and offer free software tutorials. Finally, the switch to a single software package (MATLAB),
which students were already using in their engineering courses, effected a cost savings for students.
All of these efforts proved quite successful and we heard little or no complaining about additional
costs from our students.
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3.9 Campus Clients

Like all Math Departments in large state universities, ours in College Park carries an enormous
service load. We have lower level (and some upper level) courses designed to serve the needs of stu-
dents in business, social sciences, education, physical and life sciences, and especially engineering.
We take pride in the care and attentiveness with which we design and deliver these courses. Now
we already mentioned that our seminal effort began in Mathematica and that we added Maple a
few years later. The rub was that the engineers were already incorporating MATLAB into their
courses and they were not particularly pleased that we were offering ODE using Mathematica and
Maple but not MATLAB. So we introduced MATLAB. But that only made matters worse as the
Engineering students clamored to get into MATLAB sections and felt discriminated against when
limited seats drove them into sections offering one of the other software systems. Engineering
continued to apply pressure and eventually we relented—all of our ODE sections now use MAT-
LAB. We surrendered in part because of our desire to treat our clients well and in part because we
became convinced that all three softwares—despite differing strengths and weaknesses—were more
than adequate for our purposes, and so we saw no political or academic advantage to resisting the
engineers.

3.10 Project Format

We already explained an important reason for our choice to publish our work in the form of a
supplement to Boyce’s ODE book. Namely, it played a key role in keeping down student costs.
But we had other reasons for producing a supplement as opposed to say a full blown textbook on
one hand or a simple set of classroom notes on the other. The reason not to do the latter was
simple and obvious. We believed that our ideas were relevant to the delivery of sophomore ODE all
over the country and we wanted to market our ideas in a format that would reach a wider audience.
So why not a textbook? Student costs were germane but not the primary driving factor. All of
the participants had active research programs. None of us had the desire to compete in the major
textbook market. We would not have objected to better royalties, but we were most reluctant to
enter the world of constant revisions, short publisher deadlines, and loss of control over academic
content that we had observed among local and national colleagues who had traveled that route.

In retrospect, we question the wisdom of that decision. It took us a long time to realize that our
publisher’s primary goal in their (very limited) promotion of our supplement was almost exclusively
to boost the sales of Boyce’s book. The number of adoptions of our book and the exposure of our
ideas would have been much greater if we had published a textbook instead of a supplement. Ah
well, water under the bridge.

Collaborators

Those who have checked the Bibliography will have noticed that there are current editions of the
Maple and MATLAB versions of our book, but not the Mathematica version. The new Maple
version [7] was accomplished through a collaboration with Larry Lardy of Syracuse University.
Plans are now in place to prepare a new Mathematica version through a collaboration with Donald
Outing of the United States Military Academy. We really appreciate the expertise and enthusiasm
that Professors Lardy and Outing have added to the SCHOL project.
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